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Abstract 

There are indications that the current generation of models used to simulate the geography 
of housing choice has reached the limits of its usefulness under existing specifications. The 
relative stasis in residential choice modeling—and urban simulation in general—contrasts 
with simulation efforts in other disciplines, where techniques, theories, and ideas drawn from 
computation and complexity studies are revitalizing the ways in which we conceptualize, 
understand, and model real-world phenomena. Many of these concepts and methodologies 
are applicable to housing choice simulation. Indeed, in many cases, ideas from computation 
and complexity studies—often clustered under the collective term of geocomputation, as 
they apply to geography—are ideally suited to the simulation of residential location 
dynamics. However, there exist several obstructions to their successful use for these 
puropses, particularly as regards the capacity of these methodologies to handle top-down 
dynamics in urban systems.  

This paper presents a framework for developing a hybrid model for urban geographic 
simulation generally and discusses some of the imposing barriers against innovation in this 
field. The framework infuses approaches derived from geocomputation and complexity with 
standard techniques that have been tried and tested in operational land-use and transport 
simulation. As a proof-of-concept exercise, a micro-model of residential location has been 
developed with a view to hybridization. The model mixes cellular automata and multi-agent 
approaches and is formulated so as to interface with meso-models at a higher scale. 
 

Keywords: geocomputation, urban geography, urban simulation, multi-agent systems, 

residential location, housing choice. 
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1. Introduction 

As the field of urban simulation moves into a state of maturity, it is noteworthy that the pace 

of change in model development appears relatively sluggish. Models in practical use today do 

not seem much changed from those in use ten or even twenty years ago (with the exception, 

of course, of models developed in academic circles; but, even there, there is much room for 

improvement). There are signs that the current generation of urban models has reached the 

limits of its usefulness under existing specifications. This proposition is unremarkable when 

we draw comparisons with other fields; new avenues of exploration dwindle, leaving little 

room for innovation. It is surprising, however, in the field of urban simulation, where cities 

are evolving and adapting at a pace that outstrips our capacity to study them in theoretical 

terms, let alone to model them. In short, the time is ripe in urban systems simulation for the 

infusion of new ideas. 

The relative stasis in urban modeling stands in marked contrast to simulation efforts in other 

disciplines (ecology, environmental science, biology, physics, economics) where techniques, 

theories, and ideas drawn from computation and the burgeoning field of complexity studies 

are revitalizing the ways in which we conceptualize and model real-world (and hypothetical) 

phenomena. Many of these concepts and methodologies are appropriate for application to 

urban systems simulation, and particularly to the modeling of housing choice. Indeed, in 

many cases, ideas from computation and complexity studies—often clustered under the 

collective term of geocomputation within geography—are ideally suited to the simulation of 

urban processes and the patterns that those processes drive. The conditions to support the 

proliferation of geocomputation models in urban studies are, to a certain extent, already 

there. New generations of spatial data have been available for developing and validating 

urban simulation models at high resolutions. New data sources now exist, as do geographic 

information systems for managing and manipulating that data. There are new theoretical 

understandings of how dynamic adaptive urban systems function as complex adaptive and 

self-organizing systems. Computing power continues to grow in potency and fall in price. 

And, critically, new simulation techniques—particularly geocomputation—offer the potential 

for a ‘revolution’ in the way we model urban systems. 
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However, there exist several significant barriers to the successful use of these new tools in 

urban simulation. If ignored, these obstacles could doom these new ideas to a fate 

reminiscent of earlier waves of large-scale urban modeling (Torrens & O'Sullivan, 2001). 

And importantly, ‘traditional’ urban simulation models still have a great deal to offer. 

This paper describes a relatively new approach to urban simulation; it describes a hybrid 

geocomputation model designed to support the exploration of ‘what-if’ scenarios for urban 

planning, urban management, and public policy formation, with particular emphasis on 

modeling residential location dynamics within the context of an interactive urban system. 

The hybrid approach fuses ‘traditional’ simulation methodologies that operate at macro- and 

meso-levels with a ‘new wave’ of geocomputation methodologies at a micro-scale. To 

demonstrate some of the practicalities of building hybrid models, a prototype residential 

location simulation is developed, fusing cellular automata and multi-agent systems at the 

micro-scale and designed to interface with meso-models at higher scales. 

 

2. ‘Traditional’ urban models and ‘traditional’ housing choice models 

‘Traditional’ urban models, developed in the style of the spatial interaction (and, to a lesser 

extent, the spatial choice) model, were pioneered in a time in which the field of urban 

simulation—and our ideas about how cities worked—was radically different from current 

manifestations. Computing power was also relatively less ubiquitous and sophisticated than it 

is today and detailed data sets were not widely available to ‘feed’ these models. The 

‘traditional’ generation of urban simulation models has come under heavy criticism (Lee, 

1973; Sayer, 1979; Lee, 1994). Many of these criticisms overlook some of the successes 

achieved by those models (Batty, 1979; Harris, 1994). However, we can identify several key 

weaknesses of ‘traditional’ models that still remain, particularly when contrasted with newer 

models currently being developed in academic contexts. 

In most instances, the criticisms of urban models in general are equally applicable to models 

of housing choice, particularly geographic models. Traditionally, there are two main 

methodologies for simulating the geography of residential location: aggregate and what we 

shall term—for want of a better classifier—choice models. Aggregate geographic models of 

residential location were developed in the tradition of the Alonso model (Alonso, 1960) and 
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subsequent notions of bid-rent theory (DiPasquale & Wheaton, 1996). Other aggregate 

models of residential location were developed as spatial interaction models (Fotheringham & 

O'Kelly, 1989). What we have termed as choice models extended the work in economics on 

housing search, following in the style of disequilibrium approaches and stopping-rule models 

(Clark & Flowerdew, 1982), essentially adding location as a new variable to the search 

procedure. Additionally, some more spatially explicit models have been developed to explore 

the role of geography in housing search, including area-based search and anchor point search 

models (McCarthy, 1982). 

Some important criticisms have been leveled against urban simulation in general (Lee, 1973; 

Sayer, 1979), and in many instances these complaints also ring true for models of housing 

choice. Aggregate models have been accused of an overly centralized approach, while the 

models in general have been censured for weak treatment of dynamics, poor attention to 

detail, lack of usability, flexibility, and realism. Importantly, many models of housing choice 

present work on individual behavior, without modeling relocating households as entity-level 

individuals! 

 

3. A ‘new wave’ of urban models 

In recent decades, geographers, economists, and sociologists have begun to work with a new 

class of simulation techniques that open up new and exciting possibilities for simulating 

systems of all descriptions, and in particular the simulation of behavioral processes and the 

structures that they generate. These models are in their relative infancy as applied to urban 

modeling and constitute a new class of simulation tools that borrow heavily from 

developments in geographic information science, artificial intelligence and artificial life, 

complexity studies, and simulation in natural sciences and social science outside of 

geography. While the use of computers and computation in urban simulation is by no means 

new, the geocomputation approach—modeling systems at the scale of individuals and entity 

level units of the built environment—is particularly innovative from an urban simulation 

standpoint and offers some significant advantages for the simulation of housing choice.  
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Advances in geographical information science 

Within the geographical sciences, geocomputation models have been supported by a flood 

of detailed geographic information that has become easily attainable in recent years. This 

data has been made available in a variety of media and covering phenomena that would not 

have been possible a relatively short time ago, e.g., multi-spectral and fine-scale resolution 

remotely sensed data on land-use and land cover change in urban areas.  The provision of 

these data has been directly responsible for addressing some of the weaknesses we have just 

mentioned: a lack of detail, for example. Also, it has had indirect impacts on urban 

simulation by supplying new insights into how urban systems operate, thereby allowing us to 

develop better-informed simulations. Furthermore, geographic information systems (GIS) 

have been developed to store, manipulate, and display spatial data. There is now a rich 

tradition of use of these systems in operational contexts. 

Object-oriented programming 

The treatment of discrete entities of urban systems; e.g., land parcels, buildings, 

administrative zones, households, and individuals; as objects has several advantages from a 

simulation standpoint. There are benefits associated with object-oriented programming 

(OOP) that remedy some of the deficiencies of ‘traditional’ models that we have already 

mentioned, particularly flexibility, usability, and realism. Object-oriented software has the 

advantage of being more realistic in terms of representing cities, housing, and households. 

The basic unit in OOP is the object (as opposed to the statement or the expression in 

procedural software). The conceptualization of pieces of inanimate code as objects mimics 

the way that we think of real world objects such as dwellings and the people that inhabit 

them: as discrete units with associated attributes and behaviors. Indeed, in OOP data and 

behavior are integrated (unlike the case in procedural software, where they are separate). 

This has the advantage of allowing model developers to focus on the program as a simulation 

rather than as a piece of software.  

Complexity studies 

Complexity studies are closely related to chaos theory (Gleick, 1987). The main idea in 

complexity is that of emergence. In emergent systems, a small number of rules or laws, 

applied at a local level and among many entities are capable of generating surprising 

complexity and often ordered patterns in aggregate form. Additionally, these systems are 
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dynamic and change over time without the direction of a centralized executive. Complex 

patterns manifest themselves in such a way that the actions of the parts do not simply sum 

to the activity of the whole (Holland, 1998). Essentially, this means that there is more going 

on in the dynamics of the system than simply aggregating little pieces into larger units. 

Examples of emergent systems abound. For example, the liquidity of water is more than a 

simple extrapolation of characteristics that can be attributed to individual water molecules, 

which have no liquid quality in isolation (Krugman, 1996). Many urban systems are also 

complex in this sense. From the local-scale interactive behavior (commuting, moving) of 

many individual objects (vehicles, people), structured and ordered patterns emerge in the 

aggregate, such as peak-hour traffic congestion (Nagel, Rasmussen, Barrett, 1996) and the 

large-scale spatial clustering of socioeconomic groups by residence (Benenson, 1998). In 

urban economics, large-scale economies of agglomeration and disagglomeration have long 

been understood to operate from local-scale interactive dynamics (Krugman, 1996). Also, 

cities exhibit several of the signature characteristics of complexity, including fractal 

dimensionality and self-similarity across scales, self-organization, and emergence (Batty & 

Longley, 1994; Allen, 1997; Portugali, 2000). 

Complexity studies offer the potential to shed new light on our thoughts regarding the inner 

workings of cities and subsystems such as the residential location market, and have already 

had profound impacts on our approach to urban simulation and modeling housing choice. 

Complexity studies point to a need for detailed, decentralized, and dynamic views of urban 

systems. The ideas also suggest that the answer to questions of the form, ‘How do housing 

markets work?’ might find new answers among the myriad and evolving interactions of 

individuals and the urban spaces that they inhabit. This is a much more generative approach 

than the reductionist view that is traditionally adopted in urban studies. Simply dissecting 

cities may not provide all the answers; on the contrary, there may be a need to build them up 

from the bottom and in doing so we may learn a lot about how they work. This may have 

some direct analogies in urban simulation also; indeed there are modeling techniques in 

geocomputation that work exactly on these principles, chiefly cellular automata (CA) and 

multi-agent systems (MAS). 
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Cellular automata and multi-agent systems 

In terms of urban simulation, CA are perhaps best used to represent the dispersal of activity 

and characteristics between discrete spatial units of urban infrastructure, such as housing 

units or parcels of land. MAS may be more suited to simulating urban population as 

collectives of individuals or households with associated behaviors and traits and the capacity 

for spatial mobility and communication. 

Cellular automata were originally pioneered in computing (Sipper, 1997) but have since seen 

uses in a wide variety of fields, including urban studies (Batty, Couclelis, Eichen, 1997; 

Torrens, 2000a). A cellular automaton is a finite state machine (an engine of sorts) that exists 

in some form of tessellated cell-space. The term automaton refers to a self-operating 

machine, but one of a very distinct nature: “An automaton is a machine that processes 

information, proceeding logically, inexorably performing its next action after applying data 

received from outside itself in light of instructions programmed within itself.” (Levy, 1992, 

p.15) Additionally, CA are parallel automata: more than one automaton is active at any given 

instance. CA are comprised of five components. The lattice of CA is the space in which they 

exist. This might be considered equivalent in a residential urban context to an environment, 

a landscape, or a territory. The lattice can also be generalized to represent urban spatial 

structures, networks of accessibility, the physical structure of the city, etc. CA cells represent 

the discrete confines of individual automata. They are the elemental building blocks of a CA, 

just like individual land parcels or buildings in a city. CA cells are, at any time, in a particular 

state. The cell state offers a flexible framework for encoding attributes of a city into an urban 

simulation model, e.g., land-use, density, land cover, rental value, etc. Neighborhoods are the 

localized regions of a CA lattice (collections of cells), from which automata draw input. 

Neighborhoods in an urban CA might represent spheres of influence or activity, e.g., market 

catchment areas, commuting watersheds, etc. The real driving force behind CA are transition 

rules. These are simply a set of conditional statements that specify the behavior of cells as CA 

evolve over time. The future conditions of cells are decided based on a set of fixed rules that 

are evaluated on input from neighborhoods. CA rules can be devised to mirror how 

phenomena in real cities operate. Additionally, we might discern a sixth component to CA—

time—that is generally discrete and proceeds in iterative steps. 
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CA offer a range of advantages for general urban simulation as well as for housing choice 

modeling, and in several ways they remedy particular deficiencies of ‘traditional’ models. CA 

can be designed with attention to detail. They are inherently spatial and decentralized. They 

are dynamic, as well as being intuitively useful and behaviorally realistic. Additionally, they 

have a “natural affinity” with raster data and GIS (Couclelis, 1997), as well as OOP. CA also 

provide a mechanism for linking micro- and macro-approaches and for connecting patterns 

with the processes that produce them. 

While CA are most suitable, in urban simulation contexts, for representing infrastructure, 

MAS are better used to model population dynamics. MAS also have origins in computer 

science, although their development post-dates that of CA by some years. Most commonly, 

MAS are used in computing as artificial intelligence systems or artificial life forms (Kurzweil, 

1999). Additionally, there are ‘species’ of agents that serve as network bots, webcrawlers, and 

spiders (Leonard, 1997). Network agents are used to navigate computer information 

networks, to ‘mine’ data, retrieve it, and return it to human users. There is also a tradition of 

using software agents to explore entomological behavior (Bonabeau, Dorigo, Theraulaz, 

1999) and the actions of agents in economic systems and markets (Luna & Stefansson, 

2000). 

Agents are quite similar to automata in their formulation but have less well-defined 

characteristics. They constitute pieces of software code with certain attributes (states) and 

behaviors (rules) (see Ferber, 1999 for a general introduction to intelligent software agents). 

They differ from CA in their spatial mobility: agents can be designed to navigate (virtual) 

spaces with movement patterns that mimic those of humans, while CA are only capable of 

exchanging data spatially with their neighborhoods. Additionally, agents can be given 

functionality that allows them to evolve over time, altering their attributes and behavior with 

the help of genetic algorithms (Mitchell, 1998). 

MAS are excellent tools for representing mobile entities in urban environments, e.g., people, 

households, vehicles, etc. They have been used in urban contexts to simulate pedestrian 

movement in dense urban environments (Schelhorn, O'Sullivan, Haklay et al., 1999; Dijkstra, 

Timmermans, Jessurun, 2000) and relocating householders (Benenson, 1998). However, 

their application to urban studies has not been as widespread as that of CA, despite offering 
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the advantages for urban simulation. Like CA, MAS are easily programmed in OOP 

environments, as well as offering advantages in terms of detail, flexibility, dynamics, usability, 

and behavioral realism. 

 

4. The need for hybrid models 

Even though CA and MAS are very suitable to the simulation of urban systems and despite 

the fact that they offer significant advantages over ‘traditional’ models, there are simply some 

things that they cannot represent well, most notably systems that operate from the top-

down. In urban contexts—and housing markets in particular—there are several systems and 

mechanisms that operate in this manner, including constraints such as planning restrictions 

and global level phenomena such as socioeconomic shocks. In light of these and other 

considerations, there is a convincing argument for developing hybrid models for real-world 

urban planning and management and the formation of public policy, as well as for academic 

inquiry. 

An approach that is based purely on CA or MAS is weaker than a more combined effort 

would be. Urban ‘cells’ do not simply mutate like bacteria in a lab experiment (O'Sullivan & 

Torrens, 2000); the characteristics of the urban infrastructure change over time because of 

human intervention within and around them. Similarly, cities are more than the people that 

inhabit them; there is a built environment that they influence and are, in turn, shaped by. 

Also, there are phenomena that operate above the scale of individuals and the urban fabric, 

such as regional economics, national geopolitical systems, weather, etc. CA and MAS are not 

well equipped to model these macro-level systems. 

To focus purely on a ‘new wave’ of urban models would ignore a rich history and 

methodology of ‘traditional’ models that have been developed and applied to cities over 

many years. CA and MAS are new ideas and have not been fully tested in real-world 

contexts. Additionally, there is the problem of ‘legacy’ systems: very many planning agencies 

have elaborate and expensive systems in operational use already, formulated under the 

influence of ‘traditional’ methodologies. A ‘new wave’ of models could not hope to simply 

sweep the existing simulation infrastructure aside, nor would that be prudent. It would be 
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much better to work within existing simulation infrastructures, to interface with ‘traditional’ 

models and supplement them rather than supplanting them. 

 

5. A conceptual design for a hybrid geocomputation model 

With the foregoing considerations in mind, we now present a conceptual framework for a 

model designed as a hybrid geocomputation environment for generating what-if scenarios to 

help in public policy formation—you might consider them as tools to think with. The 

framework merges approaches from geocomputation (CA and MAS) with ‘traditional’ 

simulation techniques, offering a suite of tools for modeling urban systems. Macro-scale 

dynamics that operate from the top-down are handled by ‘traditional’ land-use and transport 

models, while micro-scale dynamics that work from the bottom-up are delegated to 

geocomputation models. The two methodologies are fused in a modular fashion using a 

system of constraining feedback mechanisms. In section 6 a prototype model for simulating 

residential location dynamics is presented within the framework of a fully interactive urban 

model, demonstrating how geocomputation models can be designed with this sort of 

framework as a consideration. 

Hybrid models are not new to urban simulation. Most operational urban models are hybrids 

consisting of separate modules for handling land-use (location decisions, development and 

redevelopment, market-clearing) and transport (potential demand and trip generation, trip 

distribution, modal split, trip assignment; figure 1). Moreover, hybrid geocomputation 

models are not new! White, Engelen, and colleagues have developed a comprehensive hybrid 

simulation environment using CA and more ‘traditional’ simulation techniques for 

operational uses in the Netherlands and elsewhere (White & Engelen, 1997; White & 

Engelen, 2000). 
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Figure 1. Specification of a ‘traditional’ land-use and transport model. 

 

So, how does our conceptual design differ from that of related work? Essentially, our model 

is designed to do mostly the same things, and goes about it in a roughly similar fashion 

(figure 2). There are some important differences however. Our model is formulated so as to 

interface with systems that are already familiar in planning agencies. The micro-scale models 

we are developing can be viewed as a logical extension of the ‘traditional’ model design. This 

interface could, conceptually, constitute a simple exchange of data between models, a set of 

constraints operating from the top-down or from the bottom-up, or the connection could be 

more tightly coupled through integrated modeling or feedback mechanisms. Our design uses 

MAS at the micro-scale, closely merged with a CA environment. Individuals in this design 

are represented explicitly as agents, while sites are modeled as CA. The algorithms that drive 

dynamics at the micro-scale are also designed so as to be as compatible as possible with 

existing systems commonly in real-world use in many planning agencies. Wherever feasible 

we use methodologies already tried and tested in operational simulation, particularly ideas 
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from urban economics and decision theory while adding unique behaviors to the model. The 

goal is to make the connection with ‘traditional’ models as seamless as possible, while 

retaining innovation. 

The model is designed in a highly modular fashion and as such has the potential to be highly 

flexible. Modeling of land-use and transport is separated (although the two approaches are 

linked via feedback mechanisms) because the two systems require quite different treatment, 

both in a theoretical sense and in terms of designing simulations. For the purposes of this 

discussion, we will focus on the land-use component of the model. The ‘traditional’ tool for 

transport modeling is the four-stage model (figure 1), but there are quite a rich range of 

methodologies for microsimulation of transport (Ben-Akiva & Bowman, 1998) and there are 

several innovative geocomputation approaches to traffic simulation (Nagel, Beckman, 

Barrett, 1999). 

The land-use component of the simulation environment is divided into three sets of models: 

those dealing with macro-level, meso-level, and micro-level subsystems (figure 2). We are not 

necessarily concerned with building models at the macro- and meso-scales as there are 

several such models currently in existence and in operational uses in urban planning and 

management (Torrens, 2000b). However, it is important to consider such systems when 

developing interface tools that operate at the micro-scale. Standard regional science models 

are used to establish ‘seed’ conditions for the model at the macro-scale. Generally, such 

models are split between simulating economic and demographic transition (Isard, 1975). 

This section of the model operates at very coarse levels of spatial and socioeconomic 

resolution. Geographically, it deals with large metropolitan regions, or perhaps with 

collections of such regions. On a socioeconomic level, employment and economic activity is 

divided into only a few key sectors, while demographics are handled at the level of a few 

household types. At the meso-level, the simulation is divided by activity. Land and real estate 

development is modeled on the demand and supply sides, with market-clearing mechanisms 

to reconcile the two. A land-use transition model simulates the dispersal of activity in the 

urban infrastructure. The location decisions of households, office employment activities 

(finance, real estate, and insurance), and (non-service) industry are handled by meso-scale 

location models. The meso-scale models simulate at an intermediate level of spatial and 
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socioeconomic resolution. Geographically, the lowest level of detail is that of the TAZ or 

local economic submarket (a neighborhood or district within a city, for example).  

The micro-level models pick up where the meso-scale models have left off (figure 3). 

Conceptually speaking, they take constraint values from higher-level models and ‘distribute’ 

them to entity level units of the built infrastructure or individuals. Equally, they could be 

formulated to operate in the opposite direction, supplying constraints for higher-level 

models, or perhaps work in a bi-directional fashion. The micro-scale infrastructure is 

represented as a CA ‘landscape’, which we populate with life-like agents. Various 

components affecting land-use dynamics are modeled in the conceptual design: the supply of 

and demand for real estate (mediated by development agents); land-use transition; and 

relocating households, offices, and industries. We have developed one of the micro-scale 

components: a model for residential location. In section 6 we will report a prototype model 

that demonstrates how the micro-level modules are constructed and how they work. 

 

6.  A prototype residential location model 

As a proof-of-concept exercise, we have built one component of the micro-scale simulation 

environment: a residential location module. The model is designed to simulate the residential 

location process from the standpoint of individual homebuyers and sellers, as well as the 

sites that they are exchanging. The model is formulated as a MAS-CA hybrid. The micro-

scale model interfaces with its ‘big brother’—a meso-scale residential location model (figure 

2). The meso-scale model provides a set of ‘seed’ conditions for the micro-model. Total 

attribute values for a single neighborhood (which you might think of as a local residential 

submarket) are thus ‘known’ at the start of the model. At various stages in the evolution of 

the micro-model, we can ‘feed’ it more of this data, which in turn may be used to constrain 

the behavior of the micro-model (somewhat like checking its progress over time). (The 

process could potentially operate the other way around, with the micro-model serving as a 

constraint on the higher-level meso-model.) Essentially then, the micro-model takes output 

from the meso-model and assigns it to individuals and individual residences within a given 

local submarket. For the purposes of this discussion, we have developed a working 

prototype, without a meso-level interface. We have also built the model with abstract data 
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for a single and hypothetical submarket, although we hope to test the simulation with real 

data. 

There are three main components to the micro-model: sites (the urban infrastructure), agents 

(the population inhabiting or visiting those sites), and globals (various storage bins for 

capturing conditions in the inner workings of the model). 

Sites are formulated as a cellular automata ‘landscape’, however there are only a few 

transition rules applied to the sites and this is done simply to manipulate their state variables 

over time; there are no dispersal mechanisms in the model (although this may be added at a 

later stage, allowing the infrastructure to evolve over time, e.g., to gentrify). Each site 

represents a particular piece of real estate with attributes as listed in Table 1. Currently a 

value is assigned to a property in an abstract manner, although this could be reformulated in 

such a way that the price of a given piece of real estate is formulated as a bundle of attributes 

(bathrooms, bedrooms, aspect, etc.) associated with the property: a so-called hedonic price. 

Additionally, for the purposes of interfacing with meso-level models, sites could have 

neighborhood characteristics added to their list of attributes, e.g., distance from a nearby 

center, accessibility to highway networks, etc. 

Two types of agents are represented in the model: homebuyers (‘mobile’ agents) and home 

sellers (‘residential’ agents). (There is also a third, ‘god’ agent that is used to automate tasks 

within the model.) The agents are designed with various attributes as listed in Table 1. (For 

the sake of parsimoniousness, residential and mobile agents are designed with the same 

attributes, although certain values may be set to null.) Additionally, agents are entrusted with 

various behaviors: a set of preferences for housing as well as the capacity to move over the 

real estate landscape and sense their surroundings. 
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Figure 2. Conceptual design of a hybrid model. 
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Figure 3. From macro- to micro-scales: Megalopolis to New York to Lower Manhattan to Times Square. 

 

Calculating lifecycle stage and value platforms 

The matching of mobile agents with sites and the decisions by residential agents regarding 

when to sell their properties are driven by a set of preference functions that are calculated 

within the model. This lends agents a set of ‘likes’ and ‘dislikes’, both for particular types of 

neighborhoods, other agents, and certain types of housing. Based on their preference 

functions, mobile agents are matched with suitable homes. 
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Table 1. The attributes of objects encoded within the model. 
Sites 

Value 

Housing type 

Lot size 

Housing tenure 

Density 

Land-use 

Number of bedrooms 

Rental value 

Discounting function 

 

 

 

 

Agents 

Income 

Age 

Children 

Household size 

Ethnicity 

Inertia 

Residency 

Segregation preference 

Lifecycle stage 

Tenure preference 

Housing preference 

Housing budget 

Willingness to leave submarket 

Socioeconomic preference 

Agent type 

 

 

One of the key variables that determine agents’ preferences for housing is their stage in the 

lifecycle (or family cycle). A rich literature exists for determining the role that lifecycle 

characteristics play in the residential location process (see Waddell, 2000 for a review), as 

well as a burgeoning science of geodemographics (Longley & Harris, 1999). Depending on 

whether individuals or households are young and/or without families or in retirement, their 

preferences for various types of housing or characteristics of individual properties—number 

of bedrooms, tenure, housing type—will change. 

Currently, our model discerns three lifecycle stages: ‘young’, ‘middle’, and ‘senior’. An 

attribute that denotes the presence of an agent in one of these lifecycle stages is added to 

their attribute profile. ‘Young’ agents are designed to represent individuals that have recently 

left the family home and are striking out on their own for the first time. They may be 

studying or working in their first full-time jobs. In the context of the geography of urban 
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location, individuals at this stage in their lifecycle may well demonstrate a preference for 

central locations close to entertainment facilities. Also, we can identify certain housing-

specific preferences; individuals at this stage in the lifecycle are more likely to favor 

apartment living than a house. 

‘Middle’ agents represent individuals that are at a stage in their lives where they may be 

beginning to start a family, or may already have started a family. Such individuals are bound 

to have different residential location geographies when compared to other lifecycle groups. 

One factor that they may find desirable, but which would be unlikely to feature highly in the 

preferences of other groups, is the presence of good schools in a suburban location, for 

example. 

‘Senior’ agents correspond to those individuals entering into retirement age, either without 

children or with children that have left home. We might consider these agents as 

representing ‘empty-nesters’. This is a tricky demographic group to model. Income variations 

may well influence the residential location behavior of ‘senior’ groups more than in other 

groups. Some may own multiple homes with quite different characteristics, e.g., a house in 

one location and a condominium in another. 

Currently, the calculation of lifecycle stage is performed quite simply in the model as a set of 

conditional statements based on age (although the potential to expand that calculation to 

incorporate other factors and perhaps to link it with family cycles, along with the potential of 

diasaggregating the groupings further, is there). If agents are between the ages of 22 and 35 

they are assigned a ‘young’ tag; between 35 and 65 they are assigned a ‘middle’ tag; and over 

65 they are regarded as ‘senior’ (agents under the age of 22 are not represented in the 

model). 

Another important variable that needs to be calculated and assigned as an agent attribute is a 

‘value platform’: the amount of money that an agent can spend per month on rent or 

mortgage payments. Currently, value platforms are calculated by simply dividing an agent’s 

income by 12. However, this could potentially be reworked as a more complicated 

calculation relying on other agent attributes such as number of children, employment, and 

age. 
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Variables for lifecycle stage and value platform are used in conjunction with other agent 

attributes (income, age, presence of children, size of household to which the agent belongs, 

ethnicity, inertia, and period of residency) as ingredients for the derivation of a set of 

preference functions. These preference functions—coupled with a set of transition rules, the 

capacity for spatial mobility, and the ability to ‘sense’ their surroundings—govern the 

behavior of agents as the model evolves. 

 

Establishing preference functions 

6.1.1. Site specific preferences 

Agents are assigned a set of preferences in the model, both for specific attributes of sites and 

for the neighborhoods in which individual properties are situated. A preference for housing 

types (apartments or houses) is assigned to each agent. Housing preference is one of the 

methods that rely heavily on an agent’s lifecycle attribute. Depending on an individual’s stage 

in the lifecycle, she is likely to have a strong preference for a house or an apartment 

(regardless of whether she can afford it). Preference for housing is assigned to agents in the 

model, principally based on lifecycle stage. If an agent is ‘young’ its preference is for 

apartments. Individuals with families are likely to prefer houses, all other things being equal. 

‘Middle’ agents with children are given a preference for houses, while those without are 

assigned preferences for apartments. ‘Senior’ agents are also assigned a preference for 

houses.  

Preferences for housing tenure (rent or own) are also assigned to agents in the model. 

‘Young’ agents are assumed to give preference to rental accommodation, while ‘middle’ and 

‘senior’ agents have a preference for owner-occupation. 

6.1.2. Neighborhood preferences 

In addition to preferences for site-specific attributes of housing, agents are also assigned 

neighborhood-level preference functions. The implication here is that homebuyers and 

home sellers factor certain conditions of the local residential submarket into their location 

decisions, principally ethnicity and socioeconomic factors. (We could also add some other 

indicators representing the quality of the built environment or the availability of 

neighborhood-scale amenities such as recreation, retail, and entertainment.) 
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Socioeconomic preferences are currently calculated only for mobile agents (although this 

could be extended to embrace residential agents also, factoring into their decisions regarding 

whether to begin a housing search). Upon entering the local submarket, an agent assesses 

whether the neighborhood is too cheap or too expensive for its budget. If so, the agent 

moves on to another submarket; if not, the agent begins to evaluate individual properties in 

the submarket. This preference is calculated as follows: 

),( ecfSn = ; where }1,0{∈c  and }1,0{∈e  (i) 

1=c  if 




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
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V , otherwise 0=c ; (ii) 

1=e   if ( )minVI m < , otherwise 0=e  (iii) 

Where nS  is the socioeconomic preference for neighborhood n ; c  is an evaluation of 

whether a submarket is too cheap and e  is an evaluation of whether a submarket is too 

expensive. minV  is the minimum value of housing in the neighborhood and mI  is the income 

of mobile agent m . 

Socioeconomic preferences are also calculated for residential agents, although they are not 

used as part of their decision to stay in the submarket, nor are they factored into the sale 

price of an agent’s property. This functionality could be added, however, allowing agents to 

‘sense’ the socioeconomic decline or gentrification of their neighborhood. Additionally, 

residential agents could ‘sense’ the socioeconomic profile of other households in the 

neighborhood by examining changes in the income of their neighbors. 

In addition to a set of neighborhood-level socioeconomic preferences, agents are also 

designed with a level of bias towards the ethnic make-up of the neighborhoods that they 

inhabit or evaluate as a potential home. A lot of work has been done looking at the 

geography of segregation in the housing market. Perhaps the most famous is that of Thomas 

Schelling (Schelling, 1969, 1978), which looked at how large-scale residential segregation 

could emerge from individual biases. Also, Benenson and colleagues have developed several 

influential MAS for exploring the spatial dynamics of residential segregation in Israel 

(Portugali, Benenson, Omer, 1997; Benenson, 1998, 1999). In our model, agents are 
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arbitrarily assigned colors (blue, red, and yellow) that we use to denote ethnicity. Agents of 

any given color have a certain preference for living with agents of the same or different 

colors. Specifically, agents are designed with a tolerance for living in neighborhoods with 

certain ethnic profiles. Red agents do not like to live in a neighborhood where blue agents 

form a majority, but are reasonably tolerant of living with yellow agents. Similarly, blue 

agents have a preference for living in neighborhoods where blue agents form the majority of 

householders. They do not like to be outnumbered by red agents and are ambivalent about 

the numbers of yellow agents in the submarket. Yellow agents have no bias for color. Cut-

off values (‘tipping balances’) for these preferences are assigned as follows. Red agents do 

not like to live in neighborhoods where the proportion of the population that is blue exceeds 

50%. Blue agents, on the other hand, will only tolerate living in neighborhoods up until the 

point where red agents constitute 33% of the population. 

Operationalizing the model 

An actual run of the model is organized as a series of events. Many sub-events within the 

model (such as calculations and the derivation of preference functions) occur on a parallel 

basis, but the main events in the model—setup and the initiation of model parameters, 

simulating the location process, and the updating of model parameters—occur iteratively 

(figure 4). 

Before we introduce mobile agents into the simulation environment we must determine 

whether any of the residential agents would like to put their properties on the market. Some 

computations are performed and residential agents make a decision whether to move, based 

on their own conditions and their knowledge of the neighborhood in which they reside. If 

an agent decides to put its home on the market, the characteristics of the site variable for 

that particular location are updated to reflect that. 
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Figure 4. Schematic diagram illustrating the key events in the model. 

 



 Torrens, New Tools for Simulating Housing Choices . Fannie Mae: Housing & the New Economy, 2001 23 

Now we introduce mobile agents into the simulation. Currently only a single agent visits a 

given residential submarket at any stage in the model, but that could be reformulated to 

create an environment of competitive buying, or perhaps some more complicated bidding 

games. A mobile agent is created, assigned attribute data, and the calculations necessary to 

establish its preference functions are performed. The mobile agent then goes through the 

process of deciding whether or not the neighborhood that it has entered is suitable, before 

evaluating individual sites. The mobile agent checks whether the market is too expensive for 

its budget, or alternatively whether it is too far below (50% of) its value platform. Then the 

agent scans the socioeconomic and ethnic profiles of the residential agents already residing 

in the submarket, and based on its biases will decide whether to stay in the submarket and 

evaluate sites, or move on to another submarket elsewhere. 

If the agent decides to stay, it begins to search for a home. The agent moves within the 

model space and visits the first location for sale. Once there, it ‘negotiates’ a sale with the 

residential agent. If the price of the property is amenable to both agents (and the 

characteristics of the property match the preferences of the mobile agent), the mobile agent 

will ‘move-in’, otherwise it will visit the next available property. If after visiting all available 

properties in the model, the agent has not found a home, it leaves the particular submarket 

and begins its search elsewhere. However, if the agent decides to buy or rent a particular 

property, the property is put ‘under offer’. The mobile agent and the residential agent trade 

‘species’ tags (the mobile agent becomes residential and vice-versa); the residential agent is 

moved out of the submarket and the mobile agent moves into the property; and a ‘sold’ tag 

is assigned to that particular site. 

The final stage in an iteration of the model is a round of ‘spring-cleaning’. Dissatisfied 

mobile agents are sent to alternative submarkets and if a residential agent has not managed 

to sell its property it decides whether to discount the price of the real estate in subsequent 

iterations of the model. Currently, prices are discounted by 5% after four iterations of the 

model. The model then returns recursively to decide whether residential agents are going to 

move. 
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Graphic user interface 

The model can be manipulated in an interactive fashion by the user through the use of a 

graphic user interface (GUI). Figure 5 shows the GUI for one particular stage in the run of a 

model. Windows for particular agents or particular sites can be called up to display the 

attributes of those objects at any given moment in the model. In figure 5 we have displayed 

windows for mobile and residential agents as well as the ‘god’ agent. Additionally, a window 

for a particular site is displayed. Also, a series of buttons and sliders are available to run 

particular events in the model and to vary the value of parameters that are used in model 

calculations, ‘on-the-fly’. A main graphics window is also shown, providing information on 

the position of sites and agents within the model space at any given moment. Additionally, 

symbols in the graphics window can be programmed to alter shape and color depending on 

the conditions of the attributes that they represent (in figure 5 they are colored to represent 

the ‘ethnicity’ of the agents residing in those sites). The graphics window, and the artificial 

submarket that it represents, are designed to mimic how a residential submarket would 

appear in the real world (figure 6). Residential agents are situated within particular sites. 

Upon visiting the submarket, a mobile agent will travel to these sites and evaluate their 

suitability for its purposes. Additionally, we have a ‘god’ agent (denoted in the diagram with 

the letter ‘G’) that is active in automating tasks within the simulation, but does not partake in 

the residential location process. 

 

7. Future developments 

The model presented in this paper is a prototype, designed to function as a proof-of-concept 

tool. Several developments and additions to the model are planned. Specifically, we hope to 

add more attributes and behaviors into the model to make the simulation more realistic. 

Some of these plans call on tried and tested methodologies from ‘traditional’ models, such as 

the reformulation of preference functions as logit and spatial choice models (De la Barra, 

1989). The model is currently setup in a nested fashion with the processing of events at 

specific cycles in the model, but the specification of functions in a probabilistic fashion at 

each stage in the nesting would lend the model an added degree of realism. Also, the model 

is quite ‘old fashioned’ in its characterization of residential location behavior and we would 
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like to explore other methodologies (marketing, spatial cognition, psychology, sociology, 

microeconomics, etc.) to find more suitable premises upon which we can design more life-

like algorithms. 

The current application of the model to a handful of sites in one particular submarket is, of 

course, quite simplistic. Linking several independent submarkets and facilitating the 

exchange of agents between them will take some further work. However, this should allow 

certain hypotheses about the residential location process (the dynamics of gentrification and 

neighborhood decline, the factors driving residential segregation, etc.) to be explored in an 

abstract fashion. Connecting the residential micro-model with other related micro-

components such as industrial location and development modules is another task that we 

need to accomplish. Additionally, there is much work to be done in designing interfaces 

(data exchanges, constraints) with meso- and macro-scale models, as well as the design of 

feedback mechanisms between independent model components. 

 

Figure 6.  The graphic user interface to the residential location model. 
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Figure 7. Organization of the residential location model. 

 

8. Conclusions 

The discussion thus far has been quite optimistic about the potential of geocomputation 

techniques to revitalize operational simulation. The techniques themselves do certainly 

represent the possibility for a ‘revolution’ in the way we simulate urban systems. However, 

there are some imposing barriers to putting those techniques into practical use in the real 

world (Torrens & O’Sullivan, 2001). Ironically, computing power poses one of the most 

pressing limitations. The prototype that we have developed here works quite well and is 

efficient computationally. However, scaling that model up to represent an entire 

metropolitan area would require daunting levels of computing power. The only operational 

equivalent is the TRANSIMS model at Los Alamos National Laboratories, which relies on 

distributed computing clusters (Nagel, Beckman, Barrett, 1999).  

Also, there are data limitations on the development of these models for practical uses. 

Conceptually, the idea of simulating individuals and the buildings that they inhabit is quite 

appealing. However, data is not widely available at the scale of the individual householder or 
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building. Also, there are several moral issues that arise from the use of individual-level—and 

often private—data in operational simulations. 

Working at the micro-scale, in some cases, reveals inadequacies in the theory of how cities 

work. The micro-approach betrays some theoretical gaps in our understanding of the 

dynamics interactions that shape our urban systems. Indeed, there is some justification for a 

‘new urban geography’ of the micro-scale. 

Furthermore, micro-scale models, particularly dynamic and process-driven simulations, are 

quite difficult to calibrate, even if data are available. In CA research, there are some 

techniques for validating the patterns that those models generate and or matching them with 

real world conditions. However, process-based calibration techniques are not widely available 

(Torrens & O'Sullivan, 2001). Organizing the model as a hybrid allows the possibility of 

scaling up the simulation to meso-scales for validation purposes. This is a reasonable 

solution, but ideally micro-models would be calibrated at the scale of the entity or the 

individual. The likely effort required to do this is, however, a daunting prospect. 

The point that we would like to convey in this paper, however, is that—at least 

methodologically—the techniques discussed here represent a move towards more 

theoretically sound, behaviorally realistic, and ultimately more useful simulation 

environments. As computer hardware develops and becomes cheaper and as detailed data 

become more widely available, the possibilities for applying geocomputation simulations in 

real world contexts grow. Certainly, these simulations can be developed as proof-of-concept 

tools and the methodologies can be refined in academic contexts in preparation for a day in 

which these tools can be used to plan and manage better cities. In the meantime, even as 

abstract tools, these simulations can do a lot for our understanding of how cities and 

housing markets work and perhaps provide new insights into how we might construct a 

more sustainable urban future. 



 Torrens, New Tools for Simulating Housing Choices . Fannie Mae: Housing & the New Economy, 2001 28 

References 

Allen, P M, 1997, Cities and Regions as Self-Organizing Systems: Models of Complexity, (Gordon and 
Breach Science Publishers, Amsterdam). 

Alonso, W, 1960, "A theory of the urban land market", Papers and Proceedings of the Regional 
Science Association 6 149-158.  

Batty, M, 1979, "Progress, success, and failure in urban modeling", Environment and Planning 
A 11 863-878.  

Batty, M, Couclelis, H, Eichen, M, 1997, "Special issue: urban systems as cellular automata", 
Environment and Planning B 24.  

Batty, M & Longley, P, 1994, Fractal Cities, (Academic Press, London). 

Ben-Akiva, M & Bowman, J L, 1998, "Integration of an activity-based model system and a 
residential location model", Urban Studies 35 1131.  

Benenson, I, 1998, "Multi-agent simulations of residential dynamics in the city", Computers, 
Environment and Urban Systems 22 25-42.  

Benenson, I, 1999, "Modelling population dynamics in the city: from a regional to a multi-
agent approach", Discrete Dynamics in Nature and Society 3 149-170.  

Bonabeau, E, Dorigo, M, Theraulaz, G, 1999, Swarm Intelligence: From Natural to Artificial 
Systems, (Oxford University Press, New York). 

Clark, W A V & Flowerdew, R, 1982, "A review of search models and their application to 
search in the housing market", in Modelling Housing Market Search , Ed. W A V Clark 
(Croom Helm, London), 4-29.  

Couclelis, H, 1997, "From cellular automata to urban models: New principles for model 
development and implementation", Environment and Planning B 24 165-174.  

De la Barra, T, 1989, Integrated Land Use and Transport Modelling: Decision Chains and Hierarchies, 
(Cambridge University Press, Cambridge). 

Dijkstra, J, Timmermans, H J P, Jessurun, A J, 2000, "A multi-agent cellular automata system 
for visualising simulated pedestrian activity", in Theoretical and Practical Issues on Cellular 
Automata, Ed. S Bandini, T Worsch (Springer-Verlag, London), 29-36.  

DiPasquale, D & Wheaton, W, 1996, Urban Economics and Real Estate Markets, (Prentice Hall, 
Englewood Cliffs, N.J.). 

Ferber, J, 1999, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence , (Addison-
Wesley, Harlow (UK)). 

Fotheringham, A S & O'Kelly, M E, 1989, Spatial Interaction Models: Formulations and 
Applications, (Kluwer Academic Publishers, Dordrecht). 

Gleick, J, 1987, Chaos: Making a New Science , (Penguin Books, New York). 

Harris, B, 1994, "The real issues concerning Lee's "Requiem"", Journal of the American Planning 
Association 60 31-34.  

Holland, J H, 1998, Emergence: From Chaos to Order, (Perseus Books, Reading, MA). 



 Torrens, New Tools for Simulating Housing Choices . Fannie Mae: Housing & the New Economy, 2001 29 

Isard, W, 1975, Introduction to Regional Science , (Prentice-Hall, Englewood Cliffs, New Jersey). 

Krugman, P, 1996, The Self-Organizing Economy, (Blackwell, Malden, MA). 

Kurzweil, R, 1999, The Age of Spiritual Machines: How We Will Live, Work and Think in the New 
Age of Intelligent Machines, (Phoenix, London). 

Lee, D B, 1973, "Requiem for large-scale models", Journal of the American Institute of Planners 39 
163-178.  

Lee, D B, 1994, "Retrospective on large-scale urban models", Journal of the American Planning 
Association 60 35-40.  

Leonard, A, 1997, Bots: The Origin of a New Species, (Hardwired, San Francisco). 

Levy, S, 1992, Artificial Life: The Quest for a New Creation, (Penguin Books, London). 

Longley, P A & Harris, R J, 1999, "Towards a new digital data infrastructure for urban 
analysis and modelling", Environment and Planning B 26 855-878.  

Luna, F & Stefansson, B, Eds, 2000, Economic Simulation in Swarm: Agent-based Modelling and 
Object Oriented Programming (Kluwer, Dordrecht). 

McCarthy, K, 1982, "An analytical model of housing search and mobility", in Modelling 
Housing Market Search , Ed. W A V Clark (Croom Helm, London), 30-53.  

Mitchell, M, 1998, An Introduction to Genetic Algorithms, (MIT Press, Cambridge, MA). 

Nagel, K, Beckman, R J, Barrett, C L, 1999, "TRANSIMS for urban planning", LA-UR 98-
4389, Los Alamos National Laboratory, Los Alamos, NM. 
http://transims.tsasa.lanl.gov/.  

Nagel, K, Rasmussen, S, Barrett, C L, 1996, "Network traffic as self-organized critical 
phenomena", TSA-DO/SA MS-M997 and CNLS MS-B258, Los Alamos National 
Laboratory, Los Alamos, NM. http://transims.tsasa.lanl.gov/.  

O'Sullivan, D & Torrens, P M, 2000, "Cellular models of urban systems", in Theoretical and 
Practical Issues on Cellular Automata , Ed. S Bandini, T Worsch (Springer-Verlag, London). 
http://www.casa.ucl.ac.uk/working_papers.htm. 

Portugali, J, 2000, Self-Organization and the City, (Springer-Verlag, Berlin). 

Portugali, J, Benenson, I, Omer, I, 1997, "Spatial cognitive dissonance and sociospatial 
emergence in a self-organizing city", Environment and Planning B 24 263-285.  

Sayer, R A, 1979, "Understanding urban models versus understanding cities", Environment and 
Planning A 11 853-862.  

Schelhorn, T, O'Sullivan, D, Haklay, M, et al., 1999, "STREETS: an agent-based pedestrian 
model", CASA Working Paper 9, University College London, Centre for Advanced 
Spatial Analysis, London.  

Schelling, T C, 1969, "Models of segregation", American Economic Review 59 488-493.  

Schelling, T C, 1978, Micromotives and Macrobehavior, (WW Norton and Company, New York). 



 Torrens, New Tools for Simulating Housing Choices . Fannie Mae: Housing & the New Economy, 2001 30 

Sipper, M, 1997, Evolution of Parallel Cellular Machines: The Cellular Programming Approach , 
(Springer, Berlin). 

Torrens, P M, 2000a, "How cellular models of urban systems work", CASA Working Paper 
28, University College London, Centre for Advanced Spatial Analysis. 
http://www.casa.ucl.ac.uk/working_papers.htm.  

Torrens, P M, 2000b, "How Land-Use and Transportation Models Work", CASA Working 
Paper 20, University College London, Centre for Advanced Spatial Analysis (CASA). 
http://www.casa.ucl.ac.uk/working_papers.htm.  

Torrens, P M & O'Sullivan, D, 2001, "Cellular automata and urban simulation: where do we 
go from here?", Environment and Planning B 28 163-168.  

Waddell, P A, 2000, "Towards a Behavioral Integration of Land Use and Transportation 
Modeling", in The 9th International Association for Travel Behavior Research Conference, 
Queensland, Australia. http://www.urbansim.org/Papers/. 

White, R & Engelen, G, 1997, "Cellular automata as the basis of integrated dynamic regional 
modelling", Environment and Planning B 24 235-246.  

White, R & Engelen, G, 2000, "High-resolution integrated modelling of the spatial dynamics 
of urban and regional systems", Computers, Environment and Urban Systems 24 383-400.  

 


