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Abstract It is widely accepted that aggregate housing prices are predictable, but that
excess returns to investors are precluded by the transactions costs of buying and
selling property. We examine this issue using a unique data set—all private
condominium transactions in Singapore during an eleven-year period. We model
directly the price discovery process for individual dwellings. Our empirical results
clearly reject a random walk in prices, supporting mean reversion in housing prices
and diffusion of innovations over space. We find that, when house prices and
aggregate returns are computed from models that erroneously assume a random walk
and spatial independence, they are strongly autocorrelated. However, when they are
calculated from the appropriate model, predictability in prices and in investment
returns is completely absent. We show that this is due to the illiquid nature of
housing transactions. We also conduct extensive simulations, over different time
horizons and with different investment rules, testing whether better information on
housing price dynamics leads to superior investment performance.
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Introduction

The durability, fixity and heterogeneity of dwellings imply that transactions costs are
significant in the housing market. In comparison to financial markets, and in
comparison to the markets for most consumer goods, housing purchases require
costly search to uncover the prices and attributes of commodities. Given the many
frictions associated with the purchase of housing, it is hardly surprising that
observed price behavior deviates from that predicted by simple models of economic
markets.

Inertia in the price adjustment process in the housing market has been well-
documented; many studies have concluded that returns in housing markets are
predictable by demonstrating that time series estimates of aggregate prices exhibit
inertia (Hosios and Pesando 1991; Guntermann and Norrbin 1991; Gatzlaff 1994;
and Malpezzi 1999).

Persistence in housing returns has been found recently at the level of individual
dwellings—in eight regional markets in Sweden (Englund et al. 1999) and in four
U.S. cities (Hill et al. 1999). These analyses reject the random walk hypothesis,
which underlies the Case and Shiller model (1989), in favor of a first-order serial
correlation process for housing prices. But in this geographical market, price signals
exist in space as well as time. Many of the features which can lead to slow diffusion
in the time domain may have analogous effects over space. Price information
diffuses over space as well as time, and information costs alone can cause prices to
deviate from random fluctuations.

Disentangling a diffusion process in the time domain and a diffusion process over
space is not straightforward. Our analysis concludes that it is important to take
explicit account of these diffusion processes—since shocks and signals tend to be
substantially more persistent when individual dwelling returns are correlated over
time and over space. Our analysis shows that, due to this persistence, conventional
procedures for estimating price series are quite likely to generate misleading
estimates of aggregate housing returns.

In this paper, we develop a model of price diffusion, and we incorporate a more
general and more appropriate structure of the price discovery process at the level of
the individual dwelling. We explicitly incorporate spatial and temporal dependence
of idiosyncratic housing prices into a repeat transactions model. We construct a
repeat transactions index of prices by estimating this model using a body of data
almost uniquely suited to the analysis: the prices of condominium dwellings in
Singapore using all transactions reported in the entire country during an eleven-year
period. Multiple transactions of the same condominium unit are observed, and all
dwellings with market transactions are geocoded. We compare the properties of
aggregate housing price indexes and returns computed from our more general model
with indexes computed from conventional models. We find that when aggregate
investment returns are estimated from models permitting housing prices to follow a
random walk and that they be spatially independent, aggregate housing returns are
strongly predictable. However, when aggregate returns are estimated from more
general models permitting mean revision and spatial correlation, predictability in
aggregate investment returns is completely absent. We show that this arises from two
sources; the illiquid nature of housing transactions and the persistent shocks to
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individual housing prices in time and over space. With these two factors present, the
estimated predictability in aggregate housing returns is biased. In principle, even
with persistent shocks on individual housing prices, if there were enough
transactions at a given point in time, then this small sample bias would disappear.
However, we also find that having more observations over time, while maintaining a
constant transaction frequency, exacerbates this bias. Only higher transactions
frequencies would reduce the bias. For the bias to disappear, however, the frequency
of transactions would need to be about as high in the housing market is as it is in the
stock market.

We then analyze the economic implications of these statistical findings for
investment in housing markets. In particular, we simulate the investment outcomes
for an investor fully informed about spatial and temporal dynamics with the
outcomes for an uninformed investor. Presumably, better information about housing
market dynamics will lead to better investment performance in the housing market.
We find that the investor with better knowledge of price diffusion over time and
space outperforms the uninformed investor, capitalizing on this informational
advantage. However, her superior performance appears to be bounded by relatively
short holding periods and low transactions costs.

“A Micro Model of House Prices” develops a general model of housing prices
that supports explicit tests for the spatial and temporal pattern of price movements.
This section links our model to the widely employed method for measuring housing
prices proposed more than 40 years ago by Bailey et al. (1963), as well as its
subsequent extensions (e.g., Case and Shiller 1987). The data are described tersely in
“Data”. Our empirical results are presented in “The Diffusion of House Price
Innovations”, “The Course of Housing Prices, Investment Returns and Their
Predictability”, “Investment Performance” and “Conclusion”. We test for random
walks in space and time against the alternative of mean reversion, and we examine
the link between pricing deviations at the individual level and aggregate price
movements. We reconcile the puzzle of autocorrelated estimates of prices and
returns. We also investigate investor behavior and housing market illiquidity in some
detail.

A Micro Model of House Prices

The objects of exchange in the housing market are imperfect substitutes for one
another. Indeed, dwellings with identical physical attributes may differ in market
price simply because the price incorporates a complex set of site-specific amenities
and access costs. But few dwellings have identical physical characteristics; thus
comparison-shopping is more difficult and more expensive than in most other
markets.

Moreover, housing transactions are made only infrequently, so households must
consciously invest in information to participate in this market. As a result, the market
is characterized by a costly matching process. Market agents, buyers, and sellers are
heterogeneous, and they differ in information and motivation; commodities are
themselves heterogeneous. Consequently an observed transaction price for a specific
unit may deviate from the price ordained in a simpler environment.

Housing Price Dynamics in Time and Space: Predictability, Liquidity and Investor Returns 5



Buyers, sellers, appraisers, and real estate agents estimate the “market price”
of a dwelling by utilizing the information embodied in the set of previously sold
dwellings. The usefulness of these transactions as a reference depends upon their
similarity across several dimensions: physical, spatial, and temporal. Inferences
about the “market price” of the dwelling can be drawn only imperfectly from a
set of past transactions, because dwellings differ structurally, enjoy different
locational attributes, and are valued under different market conditions by
different actors over time. Because dwellings trade infrequently, the arrival of
new information about market values is slow. From an informational standpoint,
the closest comparable transaction across these various dimensions may be the
last transaction of the same dwelling. Alternatively, the most comparable
transaction may be the contemporaneous selling price of another dwelling in
close physical proximity.

An attempt to uncover the market value of a dwelling is further complicated by
the fact that a transactions price is not only a function of observable physical
characteristics, but also of unobserved buyer and seller characteristics such as their
urgency to conclude a transaction (Quan and Quigley 1991). For any given
transaction, all that is known is that an offer was made by a specific buyer that was
higher than a specific seller’s reservation price.

We develop a model with spatially and temporally correlated errors in a repeat
transactions framework. Innovations in housing prices are assumed to take place
continually, but transactions are observed sporadically. At any point in time, the
prices of houses are dependent over space. In the determination of the price of a
house, the weights attributable to neighboring houses depend upon their proximity to
the house. But the prices of neighboring houses are also observed only infrequently.

Let the log transaction price of dwelling i at time t be

Vit ¼ Pt þ Qit þ eit ¼ Pt þ Xitb þ eit; ð1Þ

where Vit is the log of the observed transactions price of dwelling i at t, and Pt is the
log of aggregate housing prices. Qit is the log of housing quality, and can be
parameterized by Xit, the set of housing attributes and by a set of coefficients, β,
which price those attributes. If a transaction is observed at two points in time, t and
τ, and if the quality of the dwelling remains constant during the interval, then

Vit % Vit ¼ Pt % Pt þ Xit % Xitð Þb þ eit % eit

¼ Pt % Pt þ eit % eit

ð2Þ

With constant quality, (2) identifies price change in the market. Equation 2 also
shows that the return on an individual dwelling can be decomposed into an
aggregate return Pt % Ptð Þ and an idiosyncratic return eit % eitð Þ.

Let the idiosyncratic part of the house price (or the error term), eit, consist of two
components that are realized for each individual dwelling at the time of transaction:
ηit, an idiosyncratic innovation without persistence; and εit, an idiosyncratic
innovation with persistence, "it ¼ l"it þ mit. In addition, assume that the value of
any particular dwelling depends also on innovations that occur to other dwellings
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contemporaneously. We assume this spatial correlation depends on the distance
between units.

eit ¼ r
XN

j¼1

wijejt þ xit ¼ r
XN

j¼1

wijejt þ "it þ hit ¼ r
XN

j¼1

wijejt þ l"i;t%1 þ hit þ mit;

ð3Þ

where wij is some function of the distance between unit i and j and N is the number
of dwellings in the economy. Let E hithjt

! "
¼ 0;E "it"jt

! "
¼ 0;E h2it

! "
¼ s2

h and
E m2

it

! "
¼ s2

m. The value of a particular dwelling depends, not only on its own past
and contemporaneous innovations, but also on innovations of other dwellings, past
and contemporaneous.

In vector notation, expression (3) is

et ¼ rWet þ xt; ð4Þ

where et is a vector of eit for all the dwellings at time t, et ¼ e1t; e2t; & & & ; eNt½ (0, W is a
weight matrix, some measure of the distance between dwellings, and xt a vector of
ξit where xt ¼ x1t; x2t; & & & ; xNt½ (0, for all dwellings. By solving for et and taking the
difference between two transactions at times t and s, we have

et % es ¼ I% rWð Þ%1 xt % xsð Þ: ð5Þ

The variance-covariance matrix of (5) is

E et % esð Þ et % esð Þ0
# $

¼ I% rWð Þ%1E xt % xsð Þ xt % xsð Þ0
# $

I% rWð Þ%1: ð6Þ

Equations 5 and 6 indicate that when the prices of dwellings are autocorrelated
over time and space, the price of any unit in the market at any period will be
predictably related to those of other units at other periods.

Transactions on dwellings occur only infrequently. First, consider the covariance in
errors between a dwelling i sold at t and s and another dwelling k sold at τ and ς,
E eit % eisð Þ ekt % ekςð Þ½ (. From Equation 6, and letting Π ¼ I% rWð Þ%1 ¼ p1;½
p2; & & & ; p2(, we have

E et % esð Þ et % eςð Þ0
# $

¼

p
0

1

p
0

2
..
.

p
0

N

2

66664

3

77775
E xt % xsð Þ xt % xς

! "0h in o
p1; p2; & & & ; pN½ (: ð7Þ

The elements of this expression are,

E eit % eisð Þ ekt % ekςð Þ½ ( ¼ p
0

i E xt % xsð Þ xt % xς
! "0h in o

pk : ð8Þ

Since E xitxjs
! "

¼ 0 for i 6¼ j;E xt % xsð Þ xt % xς
! "0h i

is a diagonal matrix such that

E xt % xsð Þ xt % xς
! "0h i

¼ E xit % xisð Þ xit % xiς
! "# $

) I: ð9Þ
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It is straightforward to show that

E xitxitð Þ ¼ l t%tj j s2
m

1% l2

 !

þ 1 t ¼ tð Þs2
h; ð10Þ

which implies

E xit % xisð Þ xit % xiς
! "# $

¼ l t%tj j % l t%ςj j % l s%tj j % l s%ςj j! " s2
m

1% l2

 !

þ 1 t ¼ tð Þ % 1 t ¼ ςð Þ % 1 s ¼ tð Þ þ 1 s ¼ ςð Þ½ (s2
h: ð11Þ

Therefore, the variance-covariance matrix of innovations between a dwelling i
sold at t and s and another dwelling k sold at τ and ς is

E eit % eisð Þ ekt % ekςð Þ½ ( ¼ p
0

i E xit % xisð Þ xit % xiς
! "# $

) I
% &

pk

¼
n

l t%tj j % l t%ςj j % l s%tj j þ l s%ςj j! "' s2
m

1% l2

(

þ 1 t ¼ tð Þ % 1 t ¼ ςð Þ % 1 s ¼ tð Þ þ 1 s ¼ ςð Þ½ (s2
h

o
p

0

ipk

ð12Þ

Equation 12 indicates how the variance-covariance matrix of residuals from the
regression specified in (2) can be used to identify the temporal and spatial
components of house price persistence, λ and ρ, respectively. Identification requires
observing at least two transactions for each dwelling and observing the distance of
each dwelling from all others in the market.

Note that this model of housing prices specializes to that of Bailey et al. (1963) when
λ = ρ = 0, to that of Case and Schiller (1987) when λ=1, ρ=0 and to those of Hill et al.
(1999) and Englund et al. (1999) when ρ=0. When, ρ=0 so that no spatial correlation
is present, the variance of the return on an individual dwelling between t and s is

var Vit % Visð Þ ¼
2s2

m

1% l2
1% lt%sð Þ þ 2s2

h; ð13Þ

which is concave in the transaction interval.
In Case and Shiller’s (1989) model, with λ=1 and ρ=0, the error term in

individual housing price follows eit ¼ "it þ hit where "it ¼ "i;t%1 þ mit. Then, the
variance of the return on an individual dwelling is

var Vit % Visð Þ ¼ t % sð Þs2
m þ 2s2

m: ð14Þ

The variance increases linearly with the length of the time interval between
transactions. Thus, with mean reversion in the data, a model based on a random walk
assumption underestimates the return variances for housing transactions over short
intervals, but overestimates the variances for housing transactions over long
intervals.1 The housing price indexes published by U.S. government agencies

1 This is because the return variance is concave when the dwelling price follows a spatio-temporal
correlation process (or a mean reverting process).
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(e.g., the OFHEO, now FHFA, price indices for metropolitan areas) are based upon
the repeat transactions model developed above with λ=1 and ρ=0. But the
computation procedures do include a second order term in the variance estimation
(See Abraham and Schauman 1991; Calhoun 1996), so that the variance increases at
a diminishing rate with the time interval between transactions (A<0).

var Vit % Visð Þ ¼ A t % sð Þ2 þ B t % sð Þ þ C ð14′Þ

Data

The analysis below is based upon all private condominium transactions in Singapore
during an eleven-year period. Non-landed properties (apartments and condomini-
ums) account for roughly two-thirds of the Singapore housing stock, and units in
condominiums account for almost 40% of private residential housing in land-scarce
Singapore.2

The data include all transactions involving condominium dwellings during the
period from January 1, 1990 to December 31, 2000.3 An extensive set of physical
characteristics of the dwellings is recorded. The date of the transaction is recorded as
well as the date of completion of construction. In addition, the address, including the
postal code, is reported. The postal code identifies the physical location—the block
of flats or, quite often, the specific building. A matrix of distances among
Singapore’s fifteen hundred postal codes permits each dwelling to be located
spatially. The data set includes transactions among dwellings in the standing stock,
sales of newly constructed dwellings, and presales of dwellings under construction
(where transactions may be consummated several months before the date
construction is actually completed).

The panel nature of the data permits us to distinguish dwellings sold more than
once, and this identifies the models specified in “A Micro Model of House Prices.”
By confining the sample to dwellings in multifamily properties, we eliminate
the types of dwellings for which additions and major renovations are feasible. The
sample of multifamily dwellings is thus less likely to include those for which the
assumption of constant quality between transactions (see Eq. 2) is seriously violated.

Singapore data offer another advantage in estimating the model of housing prices,
namely a spatial homogeneity of local public services (e.g., police protection,
neighborhood schools), especially when compared to cities of comparable size in
North America. During the decade of the 1990s, there was no discernible trend in the
quality of neighborhood attributes of the bundle of housing services.4

Table 1 presents a summary of the repeat sales data used in the empirical analysis
reported below. There are several points worth noting. First, confirming the

2 See Sing (2001) for an extensive discussion of the condominium market in Singapore.
3 The data have been supplied by the Singapore Institute of Surveyors and Valuers (SISV) which gathers
transactions data from a variety of sources including legal registration records and developers’ transactions
records.
4 One possible exception to this may be accessibility, where improvement in the transport system and its
pricing may have altered the workplace access of certain neighborhoods.
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infrequency of housing transactions, the number of dwellings sold more than once is
less than 20% of the population of dwellings sold during the eleven-year period.
Only 3% of the 52,337 dwellings were sold more than twice in the eleven-year
period.

Second, the average selling prices tend to be higher for dwellings sold more
frequently. The rate of appreciation is also higher. On average, dwellings sold five
times appreciate almost twice as fast as dwellings sold only twice. For the dwellings
sold more frequently, price appreciation tends to be more volatile. Transactions
involving high-turnover dwellings are apparently riskier, but this risk is compensated
by higher returns.

Third, the intervals between transactions are longer for dwellings sold
infrequently. In part, this is an artifact of the fixed sampling framework. For presold
dwellings, the average elapsed time between transaction and completion of
construction is largest for those sold least frequently, which is not consistent with
the popular belief in Singapore that presales are associated with “speculation” in the
housing market.

Fourth, there are some differences in the characteristics of the dwellings sold
more frequently. They tend to be larger in area, contain more rooms, and they are
more centrally located. Their transit access is similar to that of dwellings sold less
frequently.

The data on condominium transactions supports a price index regression model of
the form of Eq. 2,

Vit % Vis ¼ PtDit % PsDis þ gkit % gkit þ eit % eis; ð15Þ

where Dij is a variable with a value of 1 for the month j in which condominium i is
sold and zero in other months, and Pj is the estimated coefficient for this variable.
There are 132 of these time variables, one for each month between 1990 and 2000.
If dwelling i has been presold, κit is the time interval between the transaction date
and the completion of construction.5 For dwellings sold after completion of
construction, κit is zero. Thus, the estimated coefficient γ measures the monthly
discount rate for presold dwellings, i.e., the discount for unrealized service flows
from dwellings which have been purchased but which are not yet available for
occupancy. The purchase of a dwelling before completion, or even before
construction, is not unique to Singapore and has become rather common in
condominium transactions, for example in vacation properties in the U.S. Pre-sale
contracts provide liquidity to developers and insurance to consumers against
unanticipated price increases in the market.6 Of the 11,883 pairs of transactions
noted in Table 1, 305 consist of presale pairs. For another 5,204 pairs, the first
transaction was made sometime before the property was completed.

5 Some dwelling units were presold multiple times before completion of construction. For those presold
units, dates of contract are used for dates of transactions.
6 Presales are widely employed in China, for example, to finance development of new housing estates. See
Deng and Liu (2008)
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The Diffusion of House Price Innovations

We assume the error terms in Eq. 3, ηit and μit, are normally distributed. The log
likelihood function for the observed sample of condominium transactions is thus

log L P; g; l; r; s2
h; s

2
m

' (
¼ % T

2
log 2pð Þ þ 1

2
log Ωj j%1

' (
% d0Ω%1d
! "n o

; ð16Þ

where d ¼ Vit % Vis % PtDit þ PsDis % gkit þ gkit½ (;Ω ¼ wij
# $

, and wij ¼ E eit%ð½
eisÞ ejt % ejς

! "
( defined in (15). We estimate the parameters, λ, ρ, γ, Pt, ση and σμ,

by maximizing the log likelihood (16), based on 11,883 observations of repeat sales
of 10,288 dwellings sold two or more times. In (3), the weights are assumed to be
inversely related to distance, up to 250 m.7 The influence of any transaction extends
for roughly 200,000 square meters in the surrounding area.

Table 2 reports the estimated error structure when it is assumed that the price of an
individual dwelling follows a spatio-temporal correlation process, a mean reverting
process, and a random walk process, respectively. In the most general model, Column
A, the estimated serial correlation coefficient, ρ, implies a large persistence in
individual housing prices, with a half life of more than 6 months. The estimated spatial
correlation coefficient, 0.55, implies a slow spatial diffusion. These coefficients are
quite precisely estimated; the estimated value for ρ, 0.89, is significantly different
from one by a wide margin. The estimated coefficient for γ, the discount for the
period between transaction and dwelling completion (for presold units), is 14 basis
points. This represents a 1.7% annual discount for a dwelling unit sold today for
occupancy a year hence. The magnitude of the discount is not trivial. During this
period aggregate housing prices rose, on average, by 0.4% monthly; thus, the discount
for presold units reduced the net price appreciation for consumers by one third.8

The second column reports parameter estimates for the model when individual
house prices are allowed to follow a mean reverting process, but with ρ assumed to
be zero. The estimated serial correlation coefficient, λ, is 0.72, somewhat smaller
than the estimate in Column A. Likelihood ratio tests reject a random walk in house
prices (λ=1) and serially uncorrelated house prices (λ=0) by wide margins, χ2=
16,564, and χ2=1,670.6 respectively. The estimated value of λ suggests that the
half-life of a one-unit shock to housing prices is about 2 months.

The third column reports parameter estimates for a model in which individual
house prices are assumed to follow a random walk process without spatial
autocorrelation. Following OFHEO, the table reports the model with a quadratic
term, as in (14′), which also fits the data better. These results suggest that the
variance in house prices increases with transaction intervals up to 37 months.

Figure 1 presents estimated monthly price indexes derived from the three models
reported in Table 2. The estimated price index from the model with a mean reverting

8 It is possible that there might exist a discrete quality change when a dwelling unit is first used. In this
case, the estimated γ would capture some of these effects as well.

7 This expedites computation of (16) by making the Σ matrix sparse. When r 6¼ 0, the Σ matrix is a full
square matrix with a length equal to the number of observations. However, with some cutoff, the W
matrix is sparse. Since πi is the i-th row of I% rWð Þ%1, when W is sparse, most of the elements of πi will
be zero. This reduces computation time considerably. We experimented with several assumed cutoff
values. They have no effect upon the results.
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process and the index from the model with a spatio-temporal correlation process
appear to move quite closely. The estimated price index from the random walk
model is consistently lower than that implied by the other two models.

The Course of Housing Prices, Investment Returns and Their Predictability

Predictability of Housing Returns

Although Fig. 1 reports similar patterns for the course of housing prices of Singapore
dwellings, the investment returns implied by these aggregate indices are quite different.
Ignoring transactions costs and leverage, the return in any period, Rt, is the change in the
asset value plus the dividend (i.e., the rental stream, St, enjoyed during the period).

Rt ¼
Pt þ St
Pt%1

) *
It%1

It

) *
; ð17Þ

where It is an index of the cost of living, less housing.
Figure 2 uses the non-housing component of the CPI for Singapore to chart the

course of real investment returns in logarithms during the eleven-year period, from

Table 2 Estimated Error Structure and Price Dynamics, Singapore condominium 1990–2000. (t-statistics
in parentheses)

A. General Spatial-
Temporal Process:

B. Mean Reverting
Process:

C. Random walk
Process:

λ≠1 and ρ≠0 λ≠1 and ρ=0 λ=1 and ρ=0

λ 0.8877 0.7170

(287.84) (62.022)

ρ 0.5512

(713.29)

ση 0.0535 2.82E-05 0.1543

(14.340) (0.0004) (6.0016*)

σμ 0.0691 0.1214 0.0307

(46.606) (53.760) (2.4826*)

γ −0.0014 −0.0009 −0.0015
(7.4748) (6.2087) (10.695)

Squared Interval −1.26E-5
(3.1868)

Average of changes in log of price index 0.00384 0.00437 0.00387

Std. Dev. of changes in log of price index 0.03530 0.04471 0.05128

Loglikelihood 1112.31 277.00 −142.32
Mean Square Error 0.05770 0.05708 0.05727

Estimates are based upon maximizing log likelihood function in Eq. 16. The model also includes 132 time
variables, one for each month between 1990 and 2000

* T-statistics are reported for the variances, not the standard deviations
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Fig. 2 Monthly Returns to Investment in Singapore Condominiums 1990–2000

Fig. 1 Singapore Condominium Price Indices 1990–2000 (The figure graphs the monthly index values
It ¼ exp½

Pt

j¼1
Pj( where the values of P are estimated from models reported in Table 2 by maximizing the

likelihood function in Eq. (16))
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the three models.9 Although the mean returns differ by less than five basis points per
month, the patterns of estimated returns and the estimated volatility from the three
models are strikingly different.

Table 3 reports tests of the predictability of estimated monthly returns for the
three indexes. We investigate the forecastability of returns based upon one-month
and three-month lags. There is a consistent disparity in the predictability of
investment returns implied by models based upon the three price generating
processes. When spatial and serial correlations are recognized in the estimation of
housing prices (Column A), there is no evidence that aggregate returns to housing
investment are predictable. However, when housing returns are estimated from a
mean reverting process without spatial correlation (Column B), standard tests reject
the null hypothesis of no predictability in returns. Finally, when returns are estimated
from the conventional random walk model, they are strongly predictable. The
p-values for both tests are less than 0.5%. These results are consistent for both a one-
period and a three-period distributed lag.10 Indeed, the nonparametric kernel-based
test (Hong 1996), reported in the last row, shows that the result does not rely upon
any parametric specification of lag structure.

The most striking feature of the table is that the predictability of the aggregate
housing returns gradually disappears as restrictive assumptions on the individual
housing price generating process are relaxed. When the assumption of the random
walk with no spatial diffusion is maintained, p-values of the test statistics are very
small. When the random walk assumption is relaxed (but spatial diffusion is not
allowed), p-values are larger; the null hypothesis of no predictability in aggregate
housing returns is still rejected at least for some of the tests. When returns on
individual dwellings are allowed to be dependent over time and over space, p-values
of the test statistics are all large enough that the null hypothesis of no predictability
in aggregate housing returns is not rejected in any of the tests. This implies that the
well known predictability in housing returns may arise simply because the
underlying price index is inaccurately estimated due to restrictive assumptions
about the price generation process.

Why does the aggregate return, when estimated with the random walk and no
spatial diffusion assumption, appear to be significantly predictable while it exhibits
no predictability when it is estimated without such restrictions?

To understand this, let bRt ¼ Rt*þ z t, where bRt is a regression-based estimate of
the aggregate return, Rt* is the true (unobserved) return, and z t is the estimation
error. Consider a regression of the estimated aggregate return on its lagged term,
bRtþ1 ¼ b0 þ b1bRt þ vt. The value of the AR(1) coefficient, β1, is

b1 ¼
cov Rt*;Rtþ1*

! "
þ cov z t; z tþ1

! "

var Rt*
! "

þ var z tð Þ
ð18Þ

For the autocorrelation coefficient, β1, to be zero, it is required that: the true
aggregate return be unpredictable, cov Rt*;Rtþ1*

! "
¼ 0; and the estimation error be not

persistent, cov z t; z tþ1

! "
¼ 0. Conversely, a non-zero estimate of the AR(1)

coefficient, β1, need not imply predictability in returns at all; it can arise from

9 We assume the implicit rent on owner-occupied condominiums, St=0.01Pt (See Englund et al. 2002).
10 These results are also apparent in more aggregated, quarterly price index models, not presented here.
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persistent forecast errors. This implies that the well-known findings that housing
prices and housing returns are predictable may arise, simply by construction, if
cov z t; z tþ1

! "
is not equal to zero.

The properties of z t determine estimated autocorrelation coefficient, β1. Suppose
we have a sample of M houses transacted in each of T periods. If cov Rt*;Rtþ1*

! "
¼ 0,

it can be shown that

E bb1
' (

¼
E z tz tþ1

! "
þ 0 1

T

! "

s2
r þ s2

" þ 0 1
T

! " þ
E z tz tþ1

! "
þ 0 1

T

! "% &
0 1

T

! "

s2
r þ s2

" þ 0 1
T

! "% &3

%
s2
"E z tz tþ1

! "
þ 0 1

T

! "

s2
r þ s2

" þ 0 1
T

! "% &2 ; ð19Þ

where E z tz tþ1

! "
! 0 for large M.

Equation 19 shows that Eðbb1Þ will converge to zero only if T is large enough and
M is also large enough. The convergence of E z tz tþ1

! "
depends on the spatial

structure of the housing market, and convergence is slow when prices of individual
dwelling units are more correlated.11

We can evaluate the impacts of the sample sizes of T and M by simulation. Using
Singapore’s spatial structure, the previously estimated parameters, and assuming

11 For example, when returns on individual dwelling units are not spatially correlated, its convergence
speed is 1/M. But when their prices are correlated, and their correlation is inversely related with distance,
the convergence speed is log ðMÞ=M .

Table 3 Forecastability of Investment Returns, Singapore Condominiums, 1990–2000 (p-values in
parentheses) bRt ¼ bo þ

Pn

i
bibRt%i þ vt

A. General Spatial-
Temporal Process:

B. Mean Reverting
Process:

C. Random walk
Process:

λ≠1 and ρ≠0 λ≠1 and ρ=0 λ=1 and ρ=0

1 Month Lag:

β1 −0.0872 −0.1718 −0.2516
F-test for β1=0 1.0395 4.4974 9.0974

(0.3099) (0.0359) (0.0031)

Box-Ljung Test 0.9706 3.9582 8.4758

(0.3245) (0.0466) (0.0036)

3 Month Lag:
P3

k¼1
bk 0.2324 0.0326 −0.1765

F-test for b1 ¼ b2 ¼ b3 ¼ 0 2.3508 2.6531 3.5673

(0.0756) (0.0516) (0.0161)

Box-Ljung Test 4.6916 7.0204 12.0101

(0.1958) (0.0713) (0.0073)

Nonparametric Test:

Kernel-based test by Hong (1996) 0.8589 1.5906 4.2699

(0.3904) (0.1117) (0.0000)
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unpredictable aggregate returns, β1=0, we simulate the Singapore private condo-
minium market in two different dimensions, M and T. First, we simulate the price of
each house in the sample each month for 10 years. We then randomly select some
fixed number of houses each month, reflecting an underlying liquidity level or
“transactions frequency.” We use the transactions so sampled to compute a repeat
sales housing price index (Eq. 2), incorrectly assuming a random walk and no spatial
diffusion. These estimates are used to compute the index-based returns, the first
order autocorrelation coefficient of housing returns, bb1, and its t-ratio. We construct
the base case of 1% transactions probability, i.e., for each month 1% of total
dwellings are randomly selected for trading. Then we extend the base case, first with
a higher transactions frequency of 5%, and second with a longer time series of 50
years and a one-percent transactions frequency. Note that these two cases will
generate the same number of observations.

Figure 3 summarizes these simulations, replicated 100 times. The figure reports
the distributions of the estimated coefficient ðbb1Þ and the corresponding t-statistics. It
reports three distributions, the first with one-percent transactions frequency and
monthly observations for 10 years, the second with the one-percent transactions
frequency but monthly observations for 50 years, and the third with five-percent
transactions frequency and monthly observations for 10 years.

A transactions frequency of 1% per month is much higher than the turnover rate
observed in virtually all housing markets.12 A transactions frequency of 5% per
month is close to the turnover rate observed in the U.S. stock market.13 Thus, the 1%
figure represents an illiquid market, and a 5% figure represents a very liquid market.

The probability distribution of bb1 with 1% transactions frequency and 120
monthly observations is sharply skewed to the left, centered around −0.3, quite far
from the true value of 0. The distribution of t-statistics shows that usual t-tests are
highly misleading. Among the 100 simulations, there are only fifteen instances
where the t-statistic is larger than −2. This indicates that when the housing market
has low transactions frequencies, even though aggregate housing returns are not
predictable, it is very likely that the estimated returns will be highly predictable. This
apparent predictability persists for low values of the monthly transactions frequency,
and it is not eliminated until the monthly turnover rate reaches 5% level. When the
transactions probability is 5%, the distribution is substantially further to the right,
and the center of the distribution is quite close to zero; the t-statistics are between −2
and 2 for 90 instances out of 100, and the null hypothesis of no predictability is
rarely rejected using conventional tests.

However, when the sample period extends to 50 years (five times the original 10
years) with the transactions frequency kept at 1%, the results are quite different. The
distribution moves to the right only by a small margin, and the center of the
distribution is still well below −0.2. At the same time, dispersion of the distribution
is reduced. In this instance, a small change in mean and a large reduction in variance

12 The turnover rate in the Singapore market during the period was about 0.34 percent per month. The
turnover rate for U.S. housing markets has averaged about 0.25 to 0.33 percent per month during the
recent past. See Duca 2005.
13 The weekly turnover rate of NYSE and AMEX during 1997–2001, reported in Cremers and Mei
(2007), was 1.4%.
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shifts the distribution of t-statistics further to the left. Therefore, if the transactions
probability remains low, but the sample period is extended, the analyst is
considerably more likely to reject the null hypothesis of no predictability. In fact,
there is no instance out of 100 simulations where the t-statistics is larger than −2.

Fig. 3 Empirical Distribution of AR(1) Coefficient and t-statistics With different transactions
probabilities, in Singapore private condominium market
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This simulation indicates how important it is to have enough observations cross
sectionally (M) in testing for the predictability of aggregate returns. At the same
time, it also shows how difficult it is to test for the predictability of returns since the
low frequency of housing transactions is not due to inadequate data collection, but
arises as an inherent feature of housing markets.

Investment Performance

The previous results show that persistent shocks in returns to individual dwellings
over time and in space, coupled with infrequent housing transactions, leads to
substantial small sample bias in the predictability of aggregate housing returns when
measured under conventional repeat sales models. Is this economically important?
How seriously do these biased forecasts affect investment decisions?

First, it is clear that the results noted above have separate implications for
aggregate housing returns and for individual housing returns. Table 3 indicates that
the aggregate housing return Rt ¼ Pt % Pt%1ð Þ is not predictable at the level of the
aggregate housing index, but the idiosyncratic housing return eit % eit%1 ¼ð
Vit % Vit%1½ ( % Pt % Pt%1½ (Þ is still predictable. Let φ denote the serial correlation of
monthly returns in an individual dwelling. It is straightforward to show, from (12),
that

f ¼ %
1% lð Þs2

m þ 1þ lð Þs2
h

2s2
m þ 2 1þ lð Þs2

h
: ð21Þ

For the Singapore housing market, the results in Table 3 indicate that an
individual housing return is substantially persistent, and its monthly serial correlation
is −0.29. This has significant implications for investment in the local housing
market. A better knowledge of the price process for individual dwellings can lead to
superior investment decisions in two ways. First, improvement may arise through
better estimates of aggregate housing price trends. Different assumptions about the
price generating process have small effects on the large-sample properties of slope
coefficients, but, as shown above, they do have substantial effects on the efficiency
of the estimated aggregate returns when transaction frequencies are low. An investor
who relies on random walk and no spatial diffusion would conclude that the
aggregate housing return is predictable. She would base her investment decision on
the “pseudo-predictability,” which will likely lead to sub par performance. Second,
improved performance will arise from basing investment decisions on more
complete information. For example, when housing prices are spatially and serially
correlated, knowledge of past and present innovations in nearby dwellings provides
information valuable for predicting the future course of prices for any house that the
investor considers for investment. The investor who believes in a random walk and
no spatial diffusion in individual housing returns would simply ignore those signals.
The empirical issue is whether these signals are economically important.

To explore this, we conduct a second simulation of investor activity which utilizes
the structure of a hypothetical “Grid City.” In this hypothetical city, dwellings are
located on a square grid with 41 points on a side, and a house at each interior point is
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separated by 50 m from its four nearest neighbors. Assume that the price of each
dwelling follows the spatial and temporal correlation process, as reported in Table 2
Column A (i.e., ρ=0.55 and λ=0.89). We simulate the price of each house in the Grid
City each month for 10 years. In the simulation, the true aggregate housing return is
not predictable, β1=0. We then analyze the results of investment rules which depend
upon forecasts of future housing returns. The investment rule applied here is quite
simple. Given assumptions on the price process and the consequent parameter values
governing the processes, an investor makes forecasts for housing returns using all the
available transactions information. The investor is instructed to “buy” if the forecasted
return is greater than some preset threshold. When the investor decides not to buy, she
is assumed to invest in some alternative asset that generates a risk free return. The
threshold may be interpreted as some known transactions costs in the housing market.
We set the risk free rate equal to zero for these simulations.

Transactions costs vary with housing market characteristics, financial market
characteristics and tax systems, so it is difficult to specify a precise level.14 We use
0%, 6% and 12% as investment thresholds, comparable with a wide range of
plausible transactions and opportunity costs.15

The simulation of housing returns is performed in a similar manner to the
previous section. The investment holding period is set at 24 months, 48 months, and
96 months. We assume that the investor observes the market and collects
transactions information during an initial observation period. We set the observation
period at 24 months, 48 months, 72 months and 96 months. For simplicity, we
concentrate on the dwelling unit located at the center of the grid. A price for each of
1,681 dwelling units is generated for every month of the observation period and the
holding period. From the simulated prices, a sample of houses is selected each
month with the preset transactions probability of 1%. Using the observations on the
houses in the sample, together with her estimates of the parameters (λ and ρ), the
investor makes a price forecast for the next 24, 48, or 96 months. If the forecasted
return exceeds the threshold, she will invest. The price at the end of the holding
period is then used to evaluate the return on her investment. We consider two
investors with differing information. The fully informed investor is armed with the
full knowledge of housing price dynamics which follows the correlation process
reported in Table 2, column A, ρ=0.55 and λ=0.89. The uninformed investor forms
her own forecasts in a similar manner. However, she assumes ρ=0 and λ=1, and
does not recognize the serial and spatial correlation of prices. It is assumed that the
transactions cost is paid when the house is sold, so the net performance of the
investment is the capital gain less transactions cost.

Table 4 summarizes the forecast performance of the two investors. The table reports
the average percent difference between the true price at the end of the holding period and
the forecast made by the two investors. Each investor uses the information available in the
observation period to make a forecast of the price at the end of the holding period. The
forecast is compared to the actual price, and the average (absolute) percent deviations are

14 The ex post opportunity cost of housing investment in Singapore during the period 1990–2000 was in
any case quite low. (Annual stock market returns averaged 0.1 percent; Treasury bill yields were about the
same).
15 For a more systematic examination of likely transactions costs in real estate, see Söderberg (1995) or
Quigley (2002).
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reported in the table. The table reports the results of 2500 replications of this comparison
using an underlying transactions probability of 1%.

Clearly the percentage errors are larger when the forecast is for prices further in
the future (that is, when the assumed holding period is longer). The percentage errors
are likewise smaller when the forecast is based upon more information (that is, when
the forecasts are based upon a longer period of observing property transactions).

The results clearly establish that the informed investor makes better forecasts of
future prices. For 15 out of 16 comparisons, the average error in the forecasts is less
for the informed than for the uninformed investor. The difference is larger for shorter
holding periods, but this advantage extends up to a holding period of 8 years.

The economic significance of the small, but systematic, advantage of the
informed investor in forecasting is analyzed in Table 5. Table 5 reports the increased
returns, in percentage points, to the informed investor as a function of the
observation period and the holding period. The average increased return to the

Observation
Periods

Holding Period

6 month 24 months 48 months 96 months

24 months Informed 15.85% 28.72% 46.68% 79.04%

Uninformed 15.98% 28.54% 47.16% 82.48%

48 months Informed 14.34% 22.26% 33.24% 51.92%

Uninformed 15.68% 24.22% 34.16% 54.80%

72 months Informed 13.91% 21.44% 28.92% 43.44%

Uninformed 15.42% 23.88% 30.64% 46.00%

96 months Informed 13.83% 20.96% 27.76% 40.80%

Uninformed 14.96% 23.62% 30.12% 43.04%

Table 4 Difference in Forecasts
by Fully Informed Investors and
Uninformed Investors for Dif-
ferent Observation Periods and
Holding Periods (2500 replica-
tions with transactions probabil-
ities of 1% per month)

Entries in the table represent the
average (absolute) percent differ-
ence between the true price at the
end of the holding period and the
forecast made by the informed and
the uninformed investor

Observation Periods Holding Period

6 month 24 months 48 months 96 months

A. Transactions Cost: 0

24 months 2.21% 1.96% 1.52% 0.96%

48 months 2.89% 2.64% 2.16% 1.68%

72 months 2.80% 3.20% 2.24% 1.20%

96 months 2.42% 3.58% 2.08% 1.44%

B. Transactions Cost: 6%

24 months 1.77% 2.52% 2.12% 1.20%

48 months 1.68% 3.64% 2.28% 1.92%

72 months 1.92% 4.36% 2.64% 1.52%

96 months 1.57% 4.72% 3.32% 1.68%

C. Transactions Cost: 12%

24 months −0.24%a 2.38% 2.36% 1.04%

48 months 0.13%a 3.48% 2.60% 2.00%

72 months 0.33% 4.30% 3.24% 1.84%

96 months 0.20% 3.84% 3.60% 1.92%

Table 5 Economic Advantage
of Fully Informed Investor over
Uninformed Investors in
Percentage Points. (2500 repli-
cations with transactions proba-
bilities of 1% per month)

a : Statistically insignificant
at 5%
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informed investor is reported for 2500 replications with an underlying transactions
frequency of 1%. Results are reported for transactions costs of 0, 6, and 12%.

With no transactions costs, the informed investor earns a return that is about 200 basis
points higher than the uninformed investor. Even with high transactions costs, the fully
informed investor outperforms the uninformed investor by one to four percentage points.
Only when transactions costs are very high (12%) and holding periods are very short (6
months), does the uninformed investor perform almost as well as the informed investor.

Conclusion

For the past 15 years, it has been widely accepted that investment returns in housing are
predictable. It is also widely believed that, due to high transactions costs, it is difficult to
take advantage of this predictability. This paper develops a model of housing price
determination that considers spatial correlation and serial correlation concurrently.
Using comprehensive data on all Singapore condominium transactions, we estimate the
extent of predictability in aggregate housing returns and in individual housing returns.
The analysis supports a general model of price discovery, rejecting a simple random
walkmodel as well as a model with the mean reversion without spatial correlation.More
importantly, we find that assumptions about the underlying price process for individual
dwellings affect the predictability in aggregate housing returns. There is no evidence of
strong predictable aggregate housing returns when the appropriate price process—
persistent idiosyncratic returns over time and space—is taken into account. This need
not necessarily imply that housing market is efficient; individual housing returns are still
persistent. The results indicate that the housing return is only predictable at the level of
the individual asset, not at the aggregate level. In contrast, when the aggregate housing
price index is estimated from a random walk model without spatial diffusion, the
estimated aggregate housing return shows substantial predictability. We show that this
arises from two sources; the illiquid nature of housing transactions and the persistent
shocks on individual housing prices in time and over space. With these two factors
present, the estimated predictability in aggregate housing returns contains substantial
small sample bias. We show that the bias cannot be removed by extending time periods
in the sample. More observations over time at the same transactions frequency only
exacerbate this bias. The bias disappears only when the transactions frequency is high
enough. However, for the bias to disappear, the transactions frequencies in the housing
market would have to be as liquid as the transactions frequencies in stock markets.

Our simulation results suggest that an investor with enough information about the
individual housing price process can, in fact, enjoy higher returns to housing
investment. Our simulation results show that the investment performance of the fully
informed investor is indeed superior to that of the naïve investor, even though her
performance is bounded by holding periods and transactions costs.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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