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Woodhead Behavior and the Pricing of Residential Mortgages 

 
 

ABSTRACT 
 

Mortgage terminations arise because borrowers exercise options. This paper investigates the 

apparently irrational behavior of those borrowers who do not terminate their mortgages even 

when the exercise value of the option is deeply in the money.  

 We develop an option-based empirical model to analyze this phenomenon -- the behavior 

of irrational or boundedly rational “woodheads.”  Of course we do not observe “woodheads” 

explicitly in any body of data. Instead, we analyze the correlates of unobserved heterogeneity 

within a large sample of mortgage holders.  We develop a three-stage maximum likelihood 

(3SML) estimator using martingale transforms to estimate the competing risks of mortgage 

prepayment and default, recognizing unobserved heterogeneity which is due in part to the 

behavior of “woodheads.” The extended model is clearly superior to alternatives on statistical 

grounds. 

 We then analyze the economic implications of this more powerful model. We analyze the 

predictions of the model for the valuation and pricing of mortgage pools and mortgage-backed 

securities. Based upon an extensive Monte Carlo simulation, we find that the 3SML model yields 

prices for seasoned mortgage pools that deviate by 0.7 to 2 percent from more primitive 

estimates. 

 The results indicate the empirical importance of heterogeneity and the implications of 

non-optimizing behavior for the valuation and pricing of mortgages and mortgage-backed 

securities. 

 

Keywords: Mortgage prepayment, heterogeneity, mortgage pricing, behavioral finance, 
martingale transform. 
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Woodhead Behavior and the Pricing of Residential Mortgages  

The growth in the scale and complexity of the U. S. mortgage market since the 

securitization revolution of the 1980s has been enormous. The volume of residential mortgages 

outstanding nearly doubled during the 1990s, and during the past five years originations of 

residential mortgages averaged more than $1.2 trillion annually. Almost sixty percent of all new 

mortgages are securitized, and the volume of outstanding mortgage related securities grows to 

$5.1 trillion as of the third quarter of 2003.1 In comparison, the volume of outstanding marketable 

Treasury securities is about $4.5 trillion, total corporate debt securities is about $4.3 trillion, and 

Federal agency debt securities is about $2.6 trillion.2

This growth has generated enormous interest in the economics of mortgage markets. 

Recent research on the economic behavior of mortgage holders yields three well-known insights.  

First, the contingent claims model provides a coherent and useful framework for analyzing 

borrower behavior.  Default and prepayment are options to put and call the contract respectively, 

and other aspects of the mortgage (including interest rate caps and many details of adjustable rate 

mortgages) are usefully viewed as options.  (See, for example, Kau and Keenan, 1995, for a 

recent survey).  Second, the jointness of the prepayment and default options is important in 

explaining behavior.  A homeowner who exercises a default option today gives up the option to 

default tomorrow, but she also gives up the option to prepay tomorrow.  Kau et al. (1995) have 

outlined the theoretical relationships among the options, and Schwartz and Torous (1993) have 

demonstrated their practical importance.  Third, duration or competing risks models provide a 

convenient analytical tool for analyzing borrower behavior.  Models of this sort were first applied 

to borrower behavior in the mortgage market fifteen years ago (See Green and Shoven, 1986), 

                                                 
1 The mortgage-related securities include GNMA, FNMA and FHLMC mortgage-backed securities, CMOs 
and private label MBS/CMOs. 
2 Estimated by the Bond Market Association, http://www.bondmarkets.com/research/debtmkt.shtml. 
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and they have increased in realism and sophistication in the past decade. (See Deng, 1997, for a 

recent application.) 

This paper analyzes a fourth issue in making this approach useful in empirical 

applications, namely the heterogeneity of mortgage holders.  In the original applications of 

duration models to biostatistics problems, the unobserved heterogeneity of subjects was clearly 

recognized.  For example, in early models analyzing the survival times of patients after medical 

treatment, it was pointed out that those who are least physically fit are more likely to succumb 

and to exit the sample of subjects (Kalbfleisch and Prentice, 1980).  In later work applying these 

models to labor markets, the same issue of selectivity was emphasized (Heckman and Singer, 

1984). 

An analogous complication arises in duration models of mortgage terminations.  After a 

mortgage is issued, those who are most financially astute are those most likely recognize, and 

thus to exercise, in-the-money options to terminate.  This means that any sample of surviving 

mortgage holders is successively more likely to include disproportionate fractions of those less 

financially astute.  In addition, previous empirical studies (see Deng et al. 2000, for example) 

suggested that certain group of borrowers tend to underreact to the news of declining market rate 

which in term may create profitable refinance opportunity. These facts can have important 

implications for the pricing of pools of mortgages.  

The empirical importance of the heterogeneity of mortgage borrowers is demonstrated in 

our companion paper (See Deng et al., 2000).3  The estimated parameters of failure time models 

of the behavior of mortgage holders are very different when unobserved heterogeneity is 

accounted for.  In particular, the magnitude and significance of variables measuring the values of 

options are much larger when unobserved heterogeneity is accounted for. 

Methods for controlling for completely unobserved heterogeneity among borrowers 

                                                 
3 Archer et al. (1996) and others have analyzed observed heterogeneity among borrowers in reduced form 
framework. 
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include assumptions about discrete groupings of heterogeneous agents (Deng et al., 2000) or 

assumptions about mixture distributions of agents with different underlying hazards (Hall, 2000). 

In contrast, Stanton (1995, 1996) and others (e.g., Richard and Roll, 1989) have specified 

heterogeneity among pools of mortgage securities, not individual mortgage holders. Stanton 

applies a mixture distribution to analyze mortgage pool prepayment risks by combining a 

prepayment hazard function which is homogeneous across agents with pool-specific transactions 

cost functions. An exogenous transactions cost function is assumed to follow a beta distribution 

which varies across individual mortgage pools. Of course, the restrictive functional form imposed 

on unobserved heterogeneous errors may not yield the most efficient estimates, and in some case 

may even bring bias to the estimates. 

This paper presents a model of borrower behavior in the mortgage market in which some 

correlates of the unobserved heterogeneity of individual borrowers are observed.  We use this 

information, together with the development of martingale transforms (Barlow and Prentice, 1988, 

and Therneau et al., 1990), to develop a three-stage maximum likelihood approach (3SML) for 

the proportional hazard model in the presence of heterogeneity among mortgage holders.  The 

model we develop is completely general and need not be limited by specifying a restrictive 

functional form or an arbitrary constellation of mass-points of unobserved heterogeneity in the 

population. 

Significantly, the model can be used to improve the accuracy of pricing mortgage pools. 

The model developed here permits spot prices to be updated continuously with the new 

information revealed by the behavior of borrowers from the pools. This feature may have direct 

application in the secondary mortgage market for the pricing of mortgage-backed securities 

composed of seasoned loans. 

In section I below we sketch out the basic model and the estimation strategy employed.  

In section II we estimate the model using a sample of individual mortgages.  We compare the 

 3



results of this estimation procedure with those obtained from more primitive models. In section 

III we consider the pricing implications of these models.  

 

I. The Model 

 The proportional hazard model introduced by Cox (1972) provides a framework for 

considering the contingent claims model empirically and for measuring the effect of financial 

options on the behavior of mortgage holders.  

 Let Tp and Td be discrete random variables representing the duration of a mortgage until 

it is terminated by the mortgage holder in the form of prepayment or default, respectively. 

Following the Cox model, the joint survivor function conditional on ηp, ηd, r, H, Y, and X can be 

expressed in the following form:  

  (1) 

( )

( )(

( )( )

1

1 2

'

1

' '

1

, | , , , , , ,

exp exp , ,

exp , , .

p

d

p d p d

t

p pk p pk p
k

t

d dk d dk d
k

S t t r H Y X

g r H Y X

g r H Y X

η η θ

η γ β β

η γ β β

=

=

⎧⎪= − + +⎨
⎪⎩

⎫
− + + ⎬

⎭

∑

∑

)2

'

)
   

In this formulation  are time-varying measures of the financial values of the 

prepayment and default options (j = p, d). r and H are the relevant interest rates and property 

values, respectively, and Y is a vector of other variables that are also relevant to describing the 

market values of the options empirically. X is a vector of other non-option-related variables, 

which may include indicators reflecting a borrower's credit risk or financial strength, as well as 

other trigger events, such as unemployment and divorce. X may include time varying covariates. 

η

( , ,jkg r H Y

p and ηd are unobserved error terms due to omitted attributes in the hazard functions for 

prepayment and default respectively. θ is a vector of parameters (e.g., γ and β) of the hazard 
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function. γjk are parameters of the baseline hazard function.  The baseline may be estimated 

nonparametrically, following Han and Hausman (1990): 

  (2) ( )01
log , , .

k

jk jk
h s ds j p dγ

−

⎡ ⎤= ⎢ ⎥⎣ ⎦∫ =

Alternatively, the form of the baseline may be imposed by employing some standard such as 

“PSA and SDA experience.” 4  

 As noted above, a major impediment to analyzing the economic behavior of mortgage 

holders is the unobserved borrower-specific heterogeneity embedded in the empirical data we 

observe.  We propose a three-stage maximum likelihood (3SML) estimator that accounts for 

unobserved heterogeneity when estimating a competing risks hazard model. The 3SML approach 

proposed here is similar to the control function approach in the discrete choice model literature 

(Petrin and Train, 2003) that use a control function to condition out the part of the error due to the 

omitted attributes correlated with the discrete choice probabilities. Following Petrin and Train, we 

specify a control function, ( )jf µ , in the survivor function to condition out part of the 

unobserved borrower-specific heterogeneity, where µ  is a vector of control variables that are 

correlated to the residuals of the survivor function due to the omitted attributes,  are a set 

of control functional forms. As argued by Petrin and Train (2003), these control functions 

are new covariates of the survivor function that, once estimated, can enter the survivor 

( )jf i

                                                 
4 The Public Securities Association (PSA) has defined a prepayment measurement standard which has been 
widely adopted by fixed-income securities analysts. This is a series of 360 monthly prepayment rates 
expressed as constant annual rates.  The series begins at 0.2 percent in the first month and increases by 0.2 
percent in each successive month until month 30, when the series levels out at 6 percent per year until 
maturity. Similarly the Bond Market Association has developed a Standard Default Assumption (SDA) that 
is widely used as a benchmark to measure loan default experience.  The SDA series begins at 0.02 percent 
annual constant rate in the first month and increases by 0.02 percent in each successive month until month 
30, when the series levels out at 0.6 percent per year for the next 30 months. Then the series declines by 
0.0095 percent each month from month 61 to month 120. At that point, the default rate remains level 
through maturity. (See Hayre [2001] pp. 168-169 for details.) Prepayments and defaults are often reported 
as simple linear multiples of PSA and SDA schedules, respectively. Therefore, by adopting the PSA and 
SDA schedules as the baselines, the factors of proportionality estimated from the hazard model can be 
expressed simply as a percentage of the “PSA and SDA experience.”  
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function like any other covariates. The conditional joint survivor function (1) for the ith 

observation can be rewritten by the following expression: 
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where piξ  and diξ  are remaining uncontrolled errors in the prepayment and default 

functions, respectively. 

 The development of counting process theory and martingale-based residuals in 

survival models provides a useful instrument for estimating the control functions ( )jf µ . 

Following Barlow and Prentice (1988), and Therneau et al. (1990), the martingale 

residual for the ith individual is defined as 

 
( ) ( ) ( )
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where  takes a value 1 at time t if individual i has experienced the event of interest and 0 

otherwise;  is a censor indicator that takes value 1 if individual i has survived up to time s, 

and 0 otherwise;  is the baseline hazard function.

( )iN t

( )iY s

( )0h s 5

 The martingale residuals can be interpreted as the difference over time in the observed 

number between events and the expected number of events. In other words, the martingale 

                                                 
5 The term “martingale residuals” is motivated by the property that, if the true value of β and  were 
used in Equation (4), then the function M

( )0h s
i  would be martingale. 
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residuals are an estimate of the excess number of events observed in the data but not predicted by 

the model. 

 However, the distribution of the martingale residual is highly skewed.6 But well-defined 

procedures (e.g., martingale transforms) are available to convert the residuals to approximate the 

normal distribution. 

 More concretely, consider a three-stage approach to estimate a maximum likelihood 

survival function of the competing risks hazard model with control function: 

 In the first stage, estimate the competing risks hazard model of mortgage prepayment and 

default specified in equation (1) ignoring the unobserved heterogeneous errors pη  and dη , and 

obtain the martingale residuals, Mpi and Mdi, for the prepayment and default functions, 

respectively. In the second stage, we estimate the control function for unobserved heterogeneity 

by regressing the martingale transform residuals, X
piM  and X

diM , on a set of observed covariates 

from the data. (See Appendix A for details of the martingale transform procedures.) In the third 

stage, re-estimate the joint survivor function including the estimated control functions, i.e., the 

predicted martingale residuals ( )ˆ ˆ,pi diM M , to condition out part of unobserved heterogeneity 

among borrowers. 
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 (5) 

 Due to the nature of the competing risks between prepayment and default, only the 

duration associated with the type which terminates first is observed, i.e. . Define (min ,i pit t=

 
6 From Equation (4), it is clear that martingale residuals are distributed between -∞ to 1. 
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( | ,p i pi diF t )ξ ξ as the probability of mortgage termination by prepayment of the ith borrower in 

period t, ( | ,d i pi diF t )ξ ξ as the probability of mortgage termination by default of the ith borrower 

in period t, and ( | ,c i pi diF t )ξ ξ  as the probability that mortgage duration data are censored for 

the ith borrower in period t due to the end of the data collection period, such that 7
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and 
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 The unconditional probability of termination is obtained by conditioning on the 

errors terms, ,pi diξ ξ and then integrating over their distribution such that: 

(9) ( ) ( ) ( )
0 0

, , , ,j i j i pi diF t F t dG j p d cξ ξ
∞ ∞

= ∫ ∫ .=

)

    

where ( ,pi diG ξ ξ  is the c.d.f. of remaining uncontrolled error terms for borrower i. 

 

The log likelihood function of the competing risks model is given by 
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where N is the sample size and , ,ji j p d c,δ = , are indicator variables that take the value of one if 

the ith loan is terminated by prepayment, default, or censoring, respectively, and zero otherwise. 

 

II. Empirical Application 

We implement this strategy using a rich sample of individual mortgage loan histories 

maintained by The Federal Home Loan Mortgage Corporation (Freddie Mac). 

 

A. The Data 

The database contains 1,489,372 observations on single family mortgage loans issued 

between 1976 and 1983 and purchased by Freddie Mac.  All are fixed-rate, level-payment, fully 

amortized loans, most of them with thirty-year terms.  The mortgage history period ends in the 

first quarter of 1992.  For each mortgage loan, the available information includes the year and 

month of origination and termination (if it has been closed), indicators of prepayment or default, 

the purchase price of the property, the original loan amount, the initial loan-to-value ratio, the 

mortgage contract interest rate, the monthly principal and interest payment, the state, the region 

and the metropolitan area in which the property is located.  For the mortgage default and 

prepayment model, censored observations include all matured loans as well as those loans active 

at the end of the period.  

 The analysis is confined to mortgage loans issued for owner occupancy, and includes 

only those loans which were either closed or still active at the first quarter of 1992.  The analysis 

is confined to loans issued in 30 major metropolitan areas (MSAs)–a total of 446,098 

observations.  Loans are observed in each quarter from the quarter of origination through the 

quarter of termination, maturation, or through 1992:I for active loans.  

                                                                                                                                                 
and (7) is an adjustment for mortgage duration data measured in discrete rather than continuous time. 
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The key variables in our analysis are those measuring the extent to which the put and call 

options are in the money and those reflecting the astuteness of borrowers.  The current mortgage 

interest rate and the initial contract terms are sufficient to compute the extent to which the option 

is in the money.  We compute a variable “Call Option” (i.e., an element of  in 

section I) measuring the ratio of the present discounted value of the unpaid mortgage balance at 

the current quarterly mortgage interest rate relative to the value discounted at the contract interest 

rate.

( ), ,pkg r H Y

8  

 We also have access to another large sample of repeat (or paired) sales of single family 

houses in these 30 metropolitan areas (MSAs).  This information is sufficient to estimate a 

weighted repeat sales house price index (WRS) separately for each of the 30 MSAs.  The WRS 

index (See Case and Shiller, 1987) provides estimates of the course of house prices in each 

metropolitan area.  Assuming that house prices follow a random walk, the WRS index also 

provides an estimate of the variance in price for each house in the sample, by metropolitan area 

and elapsed time since purchase (Deng, et al., 2000).  

 Estimates of the mean and variance of individual house prices, together with the unpaid 

mortgage balance (computed from the contract terms), permit us to estimate the distribution of 

homeowner equity quarterly for each observation.  In particular, the variable “Put Option” (i.e., 

an element of  in section I) measures the probability that homeowner equity is 

negative, i.e., the probability that the put option is in the money.

( , ,pkg r H Y )

                                                

9 The details of the calculation of 

these variables are reported in Deng et al. (2000). 

 
8 Specifically, for fixed-rate level-payment mortgage i with a mortgage note rate of ri , and the mortgage 
term in quarters of TMi, at each quarter ki after origination at time τi, when the local market interest rate is 

, where j indexes the local region, the “Call Option” is defined as: , i ij km τ +
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9 Specifically, the market value Mi of property i, purchased at a cost of Ci at time τi and evaluated ki quarters 
thereafter is ( ), , , ,

i i ii k i j k jH C I Iτ τ+=  where Ij,t is the price index in metropolitan area j at time t and where 
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 As proxies for other “trigger events,” we include a measure of the quarterly 

unemployment rate and the annual divorce rate by state (i.e., X in section I). 

The correlate of unobserved heterogeneity across borrowers is computed in the following 

way.  At each quarter since origination, we calculate whether the intrinsic value of call option is 

in the money (this merely indicates whether current market interest rates on new first mortgages10 

are lower than the contract interest rate).  We then compute a time-varying covariate, W, for each 

borrower reflecting the number of quarters since origination that an in-the-money call was not 

exercised.  A borrower who systemically passes up profitable opportunities to prepay the 

mortgage is more likely to be a “woodhead.”  Our measure, W, treats differences in “astuteness” 

among borrowers, in their “costs of calculation,” and in their “transactions costs” as 

observationally equivalent.  

An analogous phenomenon of underreaction and momentum trading in the asset markets 

has been documented in the behavioral finance literature. For example, Harrison and Stein (1999) 

developed a bounded rationality theory to explain underreaction in response to the news in asset 

trading market. They attribute the underreaction behavior to the slow diffusion of dispersed 

information. On the other hand, Daniel, Hirshleifer and Subrahmanyam (1998), and Barberis, 

Shleifer and Vishny (1998) attribute the observed pervasive anomalies in the asset market to 

cognitive biases of agent. The cognitive theory assumes that individual agent is Bayesian 

optimizer who has a strong prior on self-attribution, which is updated very slowly in response to 

the news. 

                                                                                                                                                 

( )
the term in parentheses follows a log normal distribution. The “Put Option” variable is defined as: 

( )2

, , ,log log_ ,i k i m i kOption V HPut ω= Φ − ( ) where Φ ⋅

,i m
2ω

 is cumulative standard normal distribution 

function, ω2 is an estimated variance, and V  is defined in footnote 5.  The term is defined more 

precisely in Deng et al., (2000).  
10 Interest rates on new mortgage contracts are available by quarter and region at 
http://www.freddiemac.com. 
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While this study does not intend to provide evidence whether the “woodhead” behavior 

observed in the residential mortgage market is due to bounded rationality or cognitive bias, we 

can use the persistent patterns of anomalies related to the “woodhead” behavior to update our 

estimation. 

We have computed the measure W at each quarter for each mortgage in the sample.  

There are a total of 16,454,954 of these event histories in our sample of mortgages.  Table I 

summarizes some of this information.  Panel A presents the distribution of W among mortgages, 

separately for the full sample and for differently seasoned mortgage pool.11 As the table indicates, 

for more than half of the mortgages in the sample, the borrower missed at least one profitable 

exercise of the call option. For mortgage pools seasoned ten years, about 85 percent of borrowers 

missed at least one opportunity. About 15 percent of borrowers in the sample missed more than 

twelve profitable opportunities, while for ten-year seasoned mortgage pools, about 22 percent of 

borrowers missed more than twelve profitable opportunities. More seasoned mortgages are 

associated with larger numbers of missed opportunities to exercise profitable options. Panel B 

presents the number of payable events, separately for the full sample and for mortgage pools of 

different seasoning. The results are similar to those reported in Panel A.  

[Table I is about here.] 

Figure I presents the cumulative frequency of W among mortgages in these different 

pools. It shows again that more seasoned mortgages are associated with larger numbers of missed 

opportunities to exercise profitable options. For more seasoned mortgages, at the time payable 

events occur, borrowers are more likely to have passed up a profitable opportunity to exercise 

options, and they are likely to have passed up more of these opportunities. 

[Figure I is about here.] 

                                                 
11 The three (five, or ten) year seasoned pool is a sub-sample of mortgage loans which have durations 
greater than three (five, or ten) years. Our full sample represents a pool containing the newly issued 
mortgage loans. 

 12



Table II presents the mean of values of in-the-money calls (in percent) by different 

seasoning of mortgage pools.  These averages are reported separately for borrowers who never 

passed up a profitable prepayment opportunity (W = 0) and for those who passed up one or two, 

three or four, five to eight, nine to twelve, and more than twelve profitable prepayment 

opportunities. The table reports two striking regularities. 

[Table II is about here.] 

First, for mortgages of given duration, the averages increase monotonically with W.  

Larger values of this variable are associated with much larger potential gains from exercise.  The 

average gain from exercise is about 1 to 3 percent for those who passed up three or four 

opportunities, 4 to 5 percent for those who passed up five to eight opportunities, up to 12 percent 

for those who passed up nine to twelve opportunities, and up to 17 percent for those who passed 

up more than twelve profitable opportunities to refinance.  The pattern of average values is 

similar for mortgage pools of differing seasoning. 

 Second, the average values of the call option associated with W > 2 declines with 

mortgage seasoning.  Foregoing three or four profitable refinance opportunities is associated with 

an average intrinsic value of the call option of 3 percent in the full sample, and with an average 

value of 1 percent for ten-year seasoned mortgage pools. 

These regularities persist for other deciles of the distribution of call values and for other 

stratifications of mortgage duration. As they season, mortgage pools are likely to contain larger 

proportions of borrowers who have foregone profitable refinance opportunities. The number of 

missed opportunities for profitable exercise is larger at the time of payable events in more 

seasoned mortgages. The average value of the call option for those remaining in the pool is 

higher.  
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B. Competing Risks Analysis 

 Our competing risks analysis is based upon a five percent random sample of these 

mortgages–22,293 observations on mortgages in 30 MSAs. 

 Table III presents several variants of the competing risks model of mortgage termination.  

Each model includes the value of each option (and its squared value) in both risk equations.  The 

results confirm the theoretical prediction that the value of both options is important in governing 

the exercise of either option.  

[Table III is about here.] 

In addition to the variables measuring the value of the options, Model 1 includes state 

average unemployment and divorce rates as well as the initial loan-to-value ratio (LTV), in four 

categories.  We use flexible baseline functions for the prepayment and default equations, i.e., the 

baseline functions are estimated non-parametrically at the same time while we estimate the 

parametric function of the proportional factors.12  Thus, the row labeled “Baseline” in the table 

reports the average shift in the non-parametric baselines for prepayment and default functions, 

respectively, estimated according to equation (2).   

The results confirm the importance of in-the-money options in the exercise of 

prepayment and default by mortgage holders.  They also provide some evidence that trigger 

events (unfortunately measured only at the state level) are important in governing exercise.  The 

results also suggest that LTV ratios may reveal information on attitudes towards risk; ceteris 

paribus, those with higher LTVs are more likely to exercise options. 

Model 2 simply adds the number of missed opportunities, W, a time-varying covariate, to 

both prepayment and default functions in this model.  This specification is analogous to those 

used by financial analysts in estimating prepayment rates for mortgage pools. 13   

                                                 
12 We also estimate these models using PSA and SDA baseline functions. These results are reported in 
Appendix B. Table B2. In general, our results are robust to the functional form imposed on the baseline. 
13 In some models employed by financial analysts, a variable measuring the spread between contract and 
current interest rates is employed, as a measure of the “burnout” of prepayment in pools of mortgages.  See, 

 14



 The variable is highly significant statistically.  Accounting for heterogeneity among 

borrowers in this way increases the magnitude of the options-related variables and improves the 

overall fit of the model. 

Model 3 extends the model 2 by recognizing of unobserved heterogeneity.  In model 3, 

we allow for the possibility that there are two distinct groups of borrowers; we call them “ruthless 

players” and “woodheads.”  Each borrower belongs to one or the other group, but we do not 

observe directly the group to which any individual belongs.  We estimate the distribution of 

unobserved heterogeneity and the average behavior of the two groups jointly with the competing 

risk functions.   

  The magnitude of the option values increases substantially when unobserved 

heterogeneity is accounted for.  The magnitudes of the other variables change very little. The 

variable W remains highly significant, even in the model which accounts for unobserved 

heterogeneity by classifying borrowers into distinct groups.  

 There is a substantial difference between the two distinct groups estimated in model 3 in 

their exercise of the prepayment option.  For prepayment, those in the high risk group are about 7 

times riskier (e.g., 4.407 versus 0.604) than borrowers in the low risk group.  This difference is 

highly significant.  For the default option, there is no significant behavioral difference between 

the two groups of borrowers.  For model 3, over 95 percent of all borrowers are classified into the 

high risk, ruthless, group. 

 We now exploit additional information in the estimation of this model, namely the 

presumed correlation between our measure of “missed opportunities,” W, adjusted by the duration 

of the loan, and the unobserved heterogeneity among mortgage borrowers.  

 We begin by estimating the Cox model of competing risks of prepayment and default 

specified by Model (1).  We then collect the martingale residuals of prepayment and default for 

                                                                                                                                                 
for example, Richard and Roll (1989) and Hall (2000). 
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each individual borrower and compute the martingale transform residuals. (See Appendix A. for 

details.) 

 We then estimate the control function for unobserved heterogeneity by regressing the 

martingale transform residuals upon our measure of the “number of missed opportunities” each 

borrower has had up to the current quarter year and the duration of the loan, such that 

 ( )1 2 ,X
pi p p i p iM W T T iα β β ε= + + +  (11) 

 ( )1 2 .X
di d d i d i iM W T Tα β β ε= + + +  (12) 

where X
piM  and X

diM  are the martingale transforms specified in Appendix A, Equations (A1) and 

(A2),  is the number of missed opportunities (i.e. the number of times that 

individual i has failed to exercise the prepayment option when it was in the money from 

origination measured at the termination time T

( )iW T

i), Ti is the age of the mortgage in quarters, 

and iε is a random error term which follows a standard normal distribution. The estimated 

coefficients (reported in Appendix B. Table B1) are highly significant in both 

prepayment and default functions. 

 Finally, we estimate the model specified in equation (5) by conditioning out part of the 

unobserved heterogeneous errors using the estimated control function, i.e., expected martingale 

residuals, ˆ
piM  and ˆ

diM , following the martingale transform procedures described in Appendix 

A. 

 A comparison with model 3, in which heterogeneity is specified as two distinct groups, 

indicates that the magnitudes of the coefficients of the option values are larger for the 

continuously varying specification of heterogeneity.  The coefficients of the other variables are 

largely unchanged.  The values of the log likelihood function in model 4 are very substantially 

higher than those of the other models reported in Table III.  The log likelihood yields a value of 

minus 65,570 for model 4 as compared to a value of minus 73,683 for the discrete measure 
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(Model 3).  Indeed, after correcting the random-effect using expected martingale residuals, we 

can no longer to estimate a model that distinguishes two separate groups among borrowers. Table 

III also reports the Schwarz B.I.C. index for each model.14 It shows clearly that model 4 

dominates all other models based on the index. 

 

C. Summary 

Table III presents a summary and comparison of the 3SML model with other less general 

models of mortgage holder behavior. Model 1 reports the ML estimates of the competing risks 

model assuming no unobserved heterogeneity across borrowers.  Model 2 adds the number of 

missed opportunities W to the analysis as an exogenous time-varying covariate.  Model 3 assumes 

in addition a bivariate distribution of unobserved heterogeneous error terms and estimates that 

distribution simultaneously with the competing risks functions by ML.  Model 4 reports the 

results when it is assumed that the number of missed opportunities W is correlated with 

unobserved individual heterogeneity and when the model incorporating this is estimated by 

3SML methods.  Differences in values of log likelihood function are substantial.  The 3SML 

model is clearly superior on statistical grounds. 

 

III. Pricing Implications 

In this section we evaluate the economic importance of this more general model in the 

pricing of mortgages, pools of mortgages, or mortgage-backed securities. We adopt a Monte 

Carlo simulation pricing approach to estimate prices for mortgage pools. We implement this 

simulation using the dynamic term structure model recently proposed by Dai and Singleton 

                                                 
14 Schwarz’s B.I.C. is defined as 

( )ln ,
2

m N
L

×
− + where N is the sample size, L is the maximized log-

likelihood of the model and m is the number of parameters in the model. The index takes into account both 
the statistical goodness of fit and the number of parameters estimated to achieve this particular degree of 
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(2000). This model, a three-factor affine term structure model (ATSM), attempts explicitly to 

balance the requirements of precision in econometric representation of the state variables and the 

computational burdens of pricing and estimation. The Dai-Singleton (DS) model consists of a 

specific stochastic long run mean and volatility of interest rates, affine functions of risk-neutral 

drift factors. The basic model we use is the DS generalization of the term structure model15 of 

Balduzzi, Das, Foresi and Sundaram (1996). Appendix B. Figure B1 reports the average path of 

simulated interest rates over thirty years using these equations and parameters. 

In our application, we simulate 3 million short rates over a thirty-year period at intervals 

of 10-5 year. We then randomly sample 2,000 quarterly interest rate paths over the thirty-year 

period. These 2,000 randomly sampled interest rate paths are applied to the prepayment and 

default functions reported in Table III to compute the quarterly prepayment and default risks of 

the mortgage pools. Finally, the prepayment and default risk-adjusted mortgage amortization cash 

flows are discounted back using the individual interest rate paths. 

Table IV summarizes the relative pricing differences of mortgage pools at three assumed 

contract interest rates. The first two columns present the mean percentage difference in 

equilibrium prices between model 1 and model 4 and between model 2 and model 4, respectively. 

Model 2 represents heterogeneity by the inclusion of the variable W directly in the competing 

risks model.16 The last column presents the percentage differences in prices between model 3 and 

model 4. Model 3 specifies the unobserved heterogeneity among borrowers in two categories and 

also includes the variable W directly in the computing risks model.  

[Table IV is about here.] 

                                                                                                                                                 
fit, by imposing a penalty for increasing the number of parameters. Lower values of the index indicate the 
preferred model. 
15 Our simulation is based upon equation (23) of DS, using the parameters reported by DS in Table II, 
Column 2. 
16 Model 2 is, perhaps, close to the representation of heterogeneity which may appear in models used by 
practitioners to price mortgage pools. See Richard and Roll (1989) for a discussion. 
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The simulations are reported separately for mortgage pools with coupon interest rates of 

8.25 percent, 8.5 percent, and 8.75 percent. The DS interest rate term structure used in our 

simulation has a long run mean of 8.27 percent.17 We assume the average initial loan-to-value 

ratio is eighty percent, and the unemployment rate and divorce rate are the sample average, seven 

percent and six percent, respectively. We use the distribution of W observed from the sample, 

reported in Table I, Panel A, as the basis for the simulation. For example, in the simulations using 

the 3-year seasoned sample, we assume 20.8 percent of mortgages have never missed a single 

profitable call opportunity, 21.7 percent of mortgages have W = 1, 12.77 percent have W = 3, 

18.17 percent have W = 5, 9.81 percent have W = 9, and 16.75 percent have W = 13.  

W, of course, varies with duration, and a mortgage pool manager does not observe the 

time-varying path of W ex ante. She can observe directly, however, the distribution of W in 

mortgage pools with different seasoning. As reported in Table I, this distribution is skewed to the 

right as a mortgage pool seasons, since the remaining sample in a seasoned pool tends to be less 

risky in exercising the refinance option.  

To produce the comparisons reported in Table IV, we first estimate the prepayment and 

default risks of each mortgage pool based on the parameters of Models 1 to 4, the distribution of 

W and the stochastic term structure simulated using the three-factor ATSM. We then compute the 

cash flows for each mortgage pool. Finally, we compute the equilibrium price of each pool using 

the 2,000 randomly sampled interest rate paths over the distribution of W. The detailed estimates 

are reported in the appendix.18 As the comparison in the table shows, the pricing differences 

                                                 
17 The long run mean and other parameters of the interest rate term structure used in the simulation are 
based on estimated parameters reported by Dai and Singleton (2000) in Table II, Column 2. 
18 Appendix B, Table B3 reports the means and t-statistics of differences in equilibrium prices of one 
million dollar mortgage pools based on the estimated prepayment and defaults implied by Model 1, Model 
2, Model 3, and Model 4. The first column presents the average price differences between Model 1 and 
Model 4. The second column presents the mean absolute price differences between Model 2 and Model 4. 
The last column presents the mean absolute price differences between Model 3 and Model 4. The 
simulation results reported in Appendix B, Table B3 use the volatility parameter and the other parameters 
reported by DS. In addition, we conducted this analysis with several different assumptions about volatility. 
The qualitative nature of the results was not affected by changes in assumed volatility. 
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estimated from different models are quite large. Model 1 to Model 3 all tend to overprice the 

mortgages compared to the model estimated using 3SML approach. The comparison also 

indicates that the gain from the 3SML estimation technique is larger for more seasoned mortgage 

pools. For example, for a 5-year seasoned mortgage pool, the pricing differences between 3SML 

model and Model 3 are about one percent, while the pricing differences between 3SML and 

Model 3 for a 10-year seasoned mortgage pool are over two percent.  

The 3SML estimation technique provides a substantially better fit to the data, as noted 

above, suggesting that it is a superior technique for analyzing heterogeneity in the behavior of 

mortgage borrowers. In addition, however, it has substantially different pricing implications. This 

suggests that the 3SML model has practical importance for the pricing and valuation of 

mortgages and mortgage-backed securities. 

 

IV. Conclusion 

The mortgage market is large and has grown greatly in importance. Until recently, it was 

estimated that the outstanding volume of mortgage related security exceeds the stock of 

outstanding marketable U.S. Treasury debt securities as well as the outstanding corporate debt 

securities. 

Contingent claims theory provides a coherent framework for the analysis of the financial 

behavior of the economic actors who hold these outstanding mortgage contracts. As an empirical 

matter, however, mortgage holders do not behave as ruthlessly as the theory predicts. This has 

implications for the pricing of mortgage pools and mortgage-backed securities in addition to the 

well being of borrowers. 

This paper develops a three-stage maximum likelihood estimator (3SML) to analyze the 

importance and extent of non-ruthless behavior in the market. The model uses information on 
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behavioral correlates of heterogeneity among borrowers to extend the competing risks model of 

mortgage termination. Analysis based upon a large sample of mortgages suggests that this method 

offers advantages in precision in comparison with conventional methods. 

The 3SML approach also supports the real-time pricing of pools of mortgage or 

mortgage-backed securities. An extensive Monte Carlo simulation indicates that the pricing 

implications of the 3SML model are substantially different, at least for this body of data. This 

suggests that the model may have considerable practical application in the pricing of seasoned 

pools of mortgages. 

 

Appendix A. Martingale Transformations 

 The distribution of the martingale residuals specified in section II equation (4) is highly 

skewed. That poses some difficulty in applying martingale residuals directly to our analysis. 

Following martingale transform procedures, we convert the residuals to approximate the normal 

distribution. For this data set, the martingale transformations that yield approximately normal 

distribution for prepayment function and default function are power functions (see Therneau, 

Grambsch, and Fleming, 1990): 

 ( ){ }
7

10log 1 ,X
pi piM abs M⎡= −⎣ ⎤⎦

}

 (A1) 

 ( ){
9

100log 1 .X
di diM abs M= −⎡ ⎤⎣ ⎦  (A2) 

 

 The expected martingale residuals ˆ
piM  and ˆ

diM  are obtained through the reverse 

transformation  

 
( )

( )

10
7

10
7

ˆ1 exp , 0
ˆ

ˆ1 exp , 0

X
pi pi

pi
X
pi pi

abs M if M
M

abs M if M

⎧ ⎡ ⎤− ≤⎪ ⎢ ⎥⎣ ⎦⎪= ⎨
⎡ ⎤⎛ ⎞⎪ − − >⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩

 (A3) 
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di di
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X
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abs M if M
M

abs M if M
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Table I. 
Number of Loans and Payable Events by Number of Missed Call Options 

This table summarizes the distribution of W, a measure that counts the frequency of missed profitable 
refinancing (call options) opportunities. We have computed the measure W at each quarter for each mortgage in 
the sample.  There are a total of 446,098 loan records and 16,454,954 of payable event histories in our sample 
of mortgages.  Panel A presents the distribution of W among mortgages, separately for the full sample and for 
differently seasoned mortgage pools. Panel B presents the number of payable events, separately for the full 
sample and for mortgage pools of different seasoning. Column percentages are in parentheses. 

 Full Sample 3-Year 
Seasoned Pool 

5-Year 
Seasoned Pool 

10-Year  
Seasoned Pool  

PANEL A – NUMBER OF LOANS 

W = 0 96,977 84,204 75,177 29,428 
 (21.74) (20.80) (20.57) (15.38) 

W = 1-2 102,936 87,818 83,001 41,614 
 (23.07) (21.70) (22.72) (21.76) 
W = 3-4 58,089 51,691 48,681 27,424 
 (13.02) (12.77) (13.32) (14.34) 
W = 5-8 79,623 73,565 63,861 36,791 
 (17.85) (18.17) (17.48) (19.23) 
W = 9-12 40,675 39,707 30,833 14,827 
 (9.12) (9.81) (8.44) (7.75) 
W > 12 67,798 67,798 63,835 41,197 
 (15.20) (16.75) (17.47) (21.54) 

Total 446,098 404,783 365,388 191,281 

PANEL B – NUMBER OF PAYABLE EVENTS 

W = 0 3,180,544 3,090,680 2,935,867 1,555,563 
 (19.33) (19.14) (18.95) (15.30) 

W = 1-2 3,725,256 3,622,341 3,542,499 2,248,700 
 (22.64) (22.43) (22.86) (22.11) 
W = 3-4 2,248,305 2,200,448 2,151,872 1,499,145 
 (13.66) (13.63) (13.89) (14.74) 
W = 5-8 3,049,864 2,992,905 2,843,530 2,018,672 
 (18.53) (18.54) (18.35) (19.85) 
W = 9-12 1,475,546 1,464,590 1,315,406 821,245 
 (8.97) (9.07) (8.49) (8.08) 
W > 12 2,775,439 2,775,439 2,704,868 2,025,307 
 (16.87) (17.19) (17.46) (19.92) 

Total 16,454,954 16,146,403     15,494,042 10,168,632 
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Figure I. Cumulative Frequency of Missed Call Opportunities. This figure presents the cumulative frequency of missed call opportunities (measured 
in quarters), separately for the full sample and for mortgage pools of different seasoning. 
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Table II.  
Mean Value of In-The-Money Calls (In Percent) at Termination 

by Number of Missed Call Opportunities and Seasoning of Mortgage Pools
Table entries are the mean values of the extent to which the call-options are in the money at the time 
of termination, separately by mortgage pools with different seasoning.  These averages are reported 
separately for borrowers who never passed a profitable prepayment opportunity (W=0) and for those 
who passed up one or two, three or four, five to eight, nine to twelve, and more than twelve 
profitable prepayment opportunities. W measures number of quarters that the call option has been 
in-the-money but the borrower has not exercised the call option. The sample consists of 446,098 
mortgages. 

 Full Sample 3-Year 
Seasoned Pool 

5-Year 
Seasoned Pool 

10-Year 
Seasoned Pool  

W = 0 -15.16 -14.66 -13.30 -6.45 

W = 1-2 -4.50 -4.53 -3.92 -1.81 

W = 3-4 3.28 2.71 2.98 1.02 

W = 5-8 5.41 5.35 4.85 3.91 

W = 9-12 11.91 11.69 9.46 5.39 

W > 12 16.85 16.85 16.10 13.71 
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Table III.   
Maximum Likelihood Estimates for Competing Risks of Mortgage Prepayment and Default   

Models 1 to 3 are estimated by MLE approach. In model 3, a bivariate distribution of unobserved heterogeneous error 
terms is estimated simultaneously with the competing risks hazard functions. This distribution identifies separately the 
baselines of the two groups and estimates the fraction of the population in each group. Model 4 is estimated by three-
stage error correction maximum likelihood 3SML approach. Prepayment and default functions are modeled as correlated 
competing risks estimated jointly. Flexible non-parametric baselines for prepayment and default functions are estimated 
simultaneously with the competing risks factors. t-ratios are in parentheses.  

 Model 1 Model 2 Model 3 Model 4 
 Prepay Default Prepay Default Prepay Default Prepay Default
Call Option (fraction of 4.799 6.801 6.343 5.735 6.523 5.753 7.348 5.667 
contract value) (112.00) (16.64) (82.01) (8.19) (76.90) (8.09) (88.02) (8.05) 

Put Option (probability -5.300 8.852 -5.804 8.854 -5.733 9.346 -5.217 8.955 
of negative equity) (-10.74) (8.58) (-11.75) (8.72) (-11.41) (9.15) (-9.34) (8.73) 

Call Option Squared 1.427 0.608 4.085 -1.656 4.637 -0.350 5.982 -1.731 
 (9.53) (0.49) (21.49) (-1.02) (21.33) (-0.21) (31.27) (-1.06) 

Put Option Squared  5.710 -9.174 6.313 -9.217 6.267 -9.629 6.052 -9.379 
 (9.10) (-6.80) (10.02) (-6.92) (9.80) (-7.19) (8.59) (-6.95) 

State Unemployment -0.039 0.083 -0.042 0.093 -0.043 0.096 -0.080 0.095 
Rate (percent) (-7.58) (1.67) (-8.15) (1.84) (-8.13) (1.88) (-14.45) (1.87) 

State Divorce Rate -0.009 0.471 -0.016 0.477 -0.022 0.482 0.010 0.472 
(percent) (-0.81) (3.95) (-1.43) (4.00) (-1.84) (4.02) (0.77) (3.93) 

0.6<LTV≤0.75 0.065 2.145 0.059 2.154 0.052 2.137 0.068 2.144 
 (2.48) (2.65) (2.18) (2.65) (1.77) (2.62) (2.16) (2.64) 

0.75<LTV≤0.8 0.044 2.491 0.044 2.495 0.036 2.493 0.059 2.492 
 (1.90) (3.12) (1.83) (3.13) (1.38) (3.11) (2.20) (3.12) 

0.8<LTV≤0.9 0.094 3.438 0.110 3.439 0.100 3.416 0.149 3.427 
 (3.77) (4.37) (4.24) (4.37) (3.54) (4.31) (5.07) (4.35) 

LTV>0.9 -0.024 3.878 0.004 3.879 0.010 3.896 -0.011 3.875 
 (-0.78) (4.94) (0.12) (4.93) (0.29) (4.92) (-0.31) (4.92) 

W   -0.044 0.034 -0.037 0.053 -0.029 0.042 
   (-22.01) (1.89) (-14.81) (2.86) (-14.77) (2.35) 

Baseline Intercept 3.709 0.001 4.070 0.001   3.471 0.001 
 (7.58) (0.83) (7.55) (0.82)   (7.22) (0.81) 

Baseline Intercept     4.407 0.001   
(“ruthless”)     (7.36) (0.81)   

Baseline Intercept     0.604 0.000   
(“woodheads”)     (2.98) (0.00)   

Fraction   0.044  
“woodheads”   (3.34)  

Log Likelihood -73,974 -73,734 -73,683 -65,570 

Schwarz B.I.C. 74,094 73,864 73,823 65,700 
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Table IV.  
Mean Percentage Differences in Equilibrium Prices Simulated by  

Econometric Models at Various Coupon Interest Rates  
The percentage price differences reported in this table are measured by the price differences 
implied by different econometric models divided by simulated pool price based on model 4. The 
Simulated prices use the volatility parameter of 1.5 percent, used by Dai and Singleton and the 
other parameters reported in Dai and Singleton (2000) Table II, Column 2, page 1964. t-ratios are 
in parentheses. 

 Model 1 
vs.  

Model 4 

Model 2 
vs.  

Model 4 

Model 3 
vs.  

Model 4 

A. 8.25 PERCENT    

Full Sample 2.00% 0.95% 0.70% 
 (154) (153) (145) 

3-Year Seasoned Pool 1.67 0.99 0.82 
 (197) (187) (173) 

5-Year Seasoned Pool 1.90 1.23 1.04 
 (305) (233) (208) 

10-Year Seasoned Pool 3.03 2.33 2.05 
 (456) (363) (319) 

B. 8.50 PERCENT    

Full Sample 2.29 1.01 0.73 
 (165) (152) (141) 

3-Year Seasoned Pool 1.85 1.01 0.82 
 (205) (188) (174) 
5-Year Seasoned Pool 2.06 1.25 1.04 
 (300) (215) (193) 
10-Year Seasoned Pool 3.33 2.44 2.12 
 (447) (334) (295) 

C. 8.75 PERCENT    

Full Sample 2.11 1.05 0.74 
 (153) (153) (142) 

3-Year Seasoned Pool 1.64 1.03 0.82 
 (184) (190) (177) 

5-Year Seasoned Pool 1.80 1.25 1.04 
 (271) (199) (181) 

10-Year Seasoned Pool 2.99 2.51 2.16 
 (425) (309) (273) 
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Appendix B. Supplementary Tables and Figures 
 

 Table B1. 
Second-Stage Estimates of Martingale Transform Residuals 

The table reports the second-stage regressions, equations (11) and (12) estimated using 
martingale transformation residuals from the first-stage Cox model based on a sample 

of 22,293 mortgages. ( ){ }7 10
log 1

X
M abs M pipi ⎡ ⎤= −⎣ ⎦  and ( ){ }9 100

log 1
X

M abs Mdidi = −⎡ ⎤⎣ ⎦  are used 
as transformation functions for prepayment and default, respectively. Skewness and 
Kurtosis for the prepayment martingale transform regression are 0.067 and 0.344, 
respectively. Skewness and Kurtosis for the default martingale transform regression are 
0.004 and 9.149, respectively. t-ratios are in parentheses. 

 

Variables Prepayment Default 

Constant 1.648 0.510 
 (226.87) (264.72) 

W (measured at Termination) -0.014 0.007 
 (-33.48) (61.62) 

Duration -0.018 0.007 
 (-99.09) (33.85) 

R2 0.356 0.205 
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Table B2.  

Estimates of Competing Risks of Mortgage Prepayment and Default Using Parametric Baselines 
Models 1 to 3 are estimated by MLE approach. In model 3, a bivariate distribution of unobserved heterogeneous error 
terms is estimated simultaneously with the competing risks hazard functions. This distribution identifies separately the 
baselines of the two groups and estimates the fraction of the population in each group. Model 4 is estimated by three-
stage error correction maximum likelihood (3SML) approach. Prepayment and default functions are modeled as 
correlated competing risks estimated jointly. Baselines for prepayment and default functions are specified by PSA and 
SDA curves, respectively. t-ratios are in parentheses. 

 Model 1 Model 2 Model 3 Model 4 
 Prepay Default Prepay Default Prepay Default Prepay Default
Call Option (fraction of 4.948 6.827 6.295 4.315 6.459 4.215 6.638 4.242 
contract value) (120.56) (18.71) (92.25) (7.10) (86.19) (6.83) (86.65) (6.96) 

Put Option (probability -6.434 9.074 -7.305 8.993 -7.360 9.562 -9.257 9.119 
of negative equity) (-13.12) (9.30) (-14.87) (9.61) (-14.77) (10.01) (-17.29) (9.67) 

Call Option Squared 1.384 0.339 3.479 -4.750 3.947 -3.701 3.703 -4.806 
 (10.35) (0.30) (21.78) (-3.37) (21.42) (-2.58) (22.22) (-3.38) 

Put Option Squared  6.860 -9.283 7.859 -9.471 7.978 -9.888 10.403 -9.659 
 (11.10) (-7.28) (12.76) (-7.72) (12.88) (-8.04) (15.89) (-7.80) 

State Unemployment -0.047 0.003 -0.061 0.052 -0.063 0.051 -0.121 0.053 
Rate (percent) (-9.56) (0.07) (-12.22) (1.20) (-12.50) (1.19) (-23.10) (1.23) 

State Divorce Rate -0.014 0.356 -0.031 0.382 -0.040 0.392 -0.060 0.378 
(percent) (-1.37) (3.33) (-2.90) (3.53) (-3.52) (3.60) (-5.01) (3.47) 

0.6<LTV≤0.75 0.077 2.184 0.076 2.204 0.074 2.203 -0.013 0.096 
 (2.94) (2.91) (2.77) (2.93) (2.53) (2.92) (-6.96) (6.12) 

0.75<LTV≤0.8 0.065 2.539 0.072 2.546 0.069 2.553 0.110 2.194 
 (2.79) (3.50) (2.95) (3.51) (2.63) (3.50) (3.45) (2.92) 

0.8<LTV≤0.9 0.123 3.462 0.146 3.475 0.141 3.459 0.138 2.542 
 (4.89) (4.81) (5.57) (4.82) (5.02) (4.78) (4.92) (3.50) 

LTV>0.9 0.007 3.900 0.041 3.915 0.049 3.934 0.238 3.462 
 (0.22) (5.40) (1.28) (5.42) (1.42) (5.43) (7.74) (4.80) 

W   -0.041 0.087 -0.036 0.107 0.082 3.911 
   (-22.00) (5.54) (-16.63) (6.39) (2.26) (5.42) 

Baseline Intercept 3.553 0.005 4.964 0.002   8.567 0.003 
 (18.12) (0.98) (17.36) (0.95)   (15.40) (0.95) 

Baseline Intercept     5.357 0.002   
(“ruthless”)     (15.84) (0.94)   

Baseline Intercept     0.587 0.000   
(“woodheads”)     (2.27) (0.00)   

Fraction   0.023  
“woodheads”   (3.03)  

Log Likelihood -74,321 -74,062 -74,018 -66,729 

Schwarz B.I.C. 74,431 74,182 74,148 66,849 
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Figure B1. Simulated Interest Rates (ATSM). The figure shows average of 2,000 Interest rate paths simulated from Dai and Singleton 
(2000), equation (23) using parameters reported in Table II, Column 2 of Dai and Singleton. Interest rate paths are simulated for three volatility 
assumptions. The calculations in Table VI are based on a volatility of 1.5.
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 Table B3. 
Mean Differences in Equilibrium Prices Simulated from One Million Dollar  

Mortgage Pools at Different Coupon Interest Rates 
This table reports mean differences in equilibrium prices implied by different econometric models 
simulated from one million dollar mortgage pools. These price differences are reported separately 
for the full sample and for sub-samples with 3-year, 5-year and 10-year seasoning. These 
simulations are based on the volatility parameter of 1.5 percent, used by Dai and Singleton and the 
other parameters reported in Dai and Singleton (2000) Table II, Column 2, page 1964. t-ratios are 
in parentheses. 

 Model 1 
vs.  

Model 4 

Model 2 
vs.  

Model 4 

Model 3 
vs.  

Model 4 

A. 8.25 PERCENT    

Full Sample $21,075 $10,026 $7,364 
 (157) (155) (146) 

3-Year Seasoned Pool 17,282 10,286 8,475 
 (200) (189) (174) 

5-Year Seasoned Pool 19,531 12,640 10,696 
 (314) (235) (209) 

10-Year Seasoned Pool 31,089 23,887 21,021 
 (477) (367) (322) 

B. 8.50 PERCENT    

Full Sample 24,078 10,628 7,659 
 (168) (154) (142) 

3-Year Seasoned Pool 19,159 10,528 8,548 
 (210) (189) (175) 
5-Year Seasoned Pool 21,196 12,849 10,751 
 (310) (217) (194) 
10-Year Seasoned Pool 34,236 25,055 21,796 
 (469) (338) (297) 

C. 8.75 PERCENT    

Full Sample 26,756 11,049 7,829 
 (179) (155) (143) 

3-Year Seasoned Pool 20,814 10,665 8,562 
 (219) (192) (179) 
5-Year Seasoned Pool 22,571 12,905 10,708 
 (300) (202) (183) 
10-Year Seasoned Pool 37,096 25,860 22,261 
 (459) (313) (276) 
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